89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer

  • Christopher G. England
  • Dawei Jiang
  • Emily B. Ehlerding
  • Brian T. Rekoske
  • Paul A. Ellison
  • Reinier Hernandez
  • Todd E. Barnhart
  • Douglas G. McNeel
  • Peng HuangEmail author
  • Weibo CaiEmail author
Original Article



Nivolumab is a human monoclonal antibody specific for programmed cell death-1 (PD-1), a negative regulator of T-cell activation and response. Acting as an immune checkpoint inhibitor, nivolumab binds to PD-1 expressed on the surface of many immune cells and prevents ligation by its natural ligands. Nivolumab is only effective in a subset of patients, and there is limited evidence supporting its use for diagnostic, monitoring, or stratification purposes.


89Zr-Df-nivolumab was synthesized to map the biodistribution of PD-1-expressing tumor infiltrating T-cells in vivo using a humanized murine model of lung cancer. The tracer was developed by radiolabeling the antibody with the positron emitter zirconium-89 (89Zr). Imaging results were validated by ex vivo biodistribution studies, and PD-1 expression was validated by immunohistochemistry. Data obtained from PET imaging were used to determine human dosimetry estimations.


The tracer showed elevated binding to stimulated PD-1 expressing T-cells in vitro and in vivo. PET imaging of 89Zr-Df-nivolumab allowed for clear delineation of subcutaneous tumors through targeting of localized activated T-cells expressing PD-1 in the tumors and salivary glands of humanized A549 tumor-bearing mice. In addition to tumor uptake, salivary and lacrimal gland infiltration of T-cells was noticeably visible and confirmed via histological analysis.


These data support our claim that PD-1-targeted agents allow for tumor imaging in vivo, which may assist in the design and development of new immunotherapies. In the future, noninvasive imaging of immunotherapy biomarkers may assist in disease diagnostics, disease monitoring, and patient stratification.


Nivolumab Programmed cell death 1 (PD-1) Positron emission tomography (PET) Immunotherapy Immune checkpoint inhibitor immunoPET 



This work was supported, in part, by the University of Wisconsin - Madison, the National Institutes of Health (NIBIB/NCI 1R01CA169365, 1R01CA205101, 1R01EB021336, T32CA009206, T32GM008505, 5T32GM08349, P30CA014520), the National Science Foundation (DGE-1256259), the American Cancer Society (125246-RSG-13-099-01-CCE), the National Science Foundation of China (81401465, 51573096), and the Basic Research Program of Shenzhen (JCYJ20170412111100742, JCYJ20160422091238319).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

259_2017_3803_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14 kb)


  1. 1.
    Philips GK, Atkins M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol. 2015;27(1):39–46. doi: 10.1093/intimm/dxu095.CrossRefGoogle Scholar
  2. 2.
    Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56. doi: 10.1158/1535-7163.MCT-14-0983.CrossRefGoogle Scholar
  3. 3.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang J, Yuan R, Song W, Sun J, Liu D, Li Z. PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy: the historical perspective. J Hematol Oncol. 2017;10(1):34. doi: 10.1186/s13045-017-0403-5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yuzefpolskiy Y, Baumann FM, Penny LA, Kalia V, Sarkar S. Signaling through PD-1 on CD8 T cells is critical for antigen-independent maintenance of immune memory. J Immunol. 2016;196(1 Supplement):129.6-.6.Google Scholar
  7. 7.
    Guo Y, Feng X, Jiang Y, Shi X, Xing X, Liu X, et al. PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget. 2016;7(30):48360–74. doi: 10.18632/oncotarget.10235.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dai C, Lin F, Geng R, Ge X, Tang W, Chang J, et al. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget. 2016;7(9):10332–44. doi: 10.18632/oncotarget.7243.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ehlerding EB, England CG, McNeel DG, Cai W. Molecular imaging of immunotherapy targets in cancer. J Nucl Med. 2016;57(10):1487–92. doi: 10.2967/jnumed.116.177493.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Heinzerling L, Kirchberger MC, Walter L, Schuler G. Predicting the response to anti-PD1 therapy in metastatic melanoma. Transl Cancer Res. 2016;5(3):S576–S9.CrossRefGoogle Scholar
  11. 11.
    Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126(9):3447–52. doi: 10.1172/JCI87324.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Diggs LP, Hsueh EC. Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomark Res. 2017;5(1):12. doi: 10.1186/s40364-017-0093-8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gangadhar TC, Salama AK. Clinical applications of PD-1-based therapy: a focus on pembrolizumab (MK-3475) in the management of melanoma and other tumor types. Onco Targets Ther. 2015;8:929–37. doi: 10.2147/OTT.S53164.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small cell lung cancer. J Clin Oncol. 2015;33(18):2004–12. doi: 10.1200/JCO.2014.58.3708.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–48. doi: 10.1016/j.ejca.2015.11.016.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gniadek TJ, Li QK, Tully E, Chatterjee S, Nimmagadda S, Gabrielson E. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy. Mod Pathol. 2017;30(4):530–8. doi: 10.1038/modpathol.2016.213.CrossRefGoogle Scholar
  17. 17.
    Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods. 2014;410:3–17. doi: 10.1016/j.jim.2014.02.011.CrossRefGoogle Scholar
  18. 18.
    Blazar BR, Carreno BM, Panoskaltsis-Mortari A, Carter L, Iwai Y, Yagita H, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171(3):1272–7.CrossRefGoogle Scholar
  19. 19.
    Schilbach K, Schick J, Wehrmann M, Wollny G, Simon P, Schlegel PG, et al. PD-1-PD-L1 pathway is involved in suppressing alloreactivity of heart infiltrating t cells during murine gvhd across minor histocompatibility antigen barriers. Transplantation. 2007;84(2):214–22. doi: 10.1097/ Scholar
  20. 20.
    Habicht A, Kewalaramani R, Vu MD, Demirci G, Blazar BR, Sayegh MH, et al. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant. 2007;7(12):2683–92. doi: 10.1111/j.1600-6143.2007.01999.x.CrossRefGoogle Scholar
  21. 21.
    Hettich M, Braun F, Bartholoma MD, Schirmbeck R, Niedermann G. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40. doi: 10.7150/thno.15253.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58(1):162–8. doi: 10.2967/jnumed.116.177857.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hernandez R, Sun H, England CG, Valdovinos HF, Ehlerding EB, Barnhart TE, et al. CD146-targeted immunoPET and NIRF imaging of hepatocellular carcinoma with a dual-labeled monoclonal antibody. Theranostics. 2016;6(11):1918–33. doi: 10.7150/thno.15568.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    The 2007 Recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP. 2007;37(2–4):1–332. doi: 10.1016/j.icrp.2007.10.003.
  25. 25.
    Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, et al. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet Res. 2013;44(1):59. doi: 10.1186/1297-9716-44-59.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45. doi: 10.2967/jnumed.106.035774.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cancer Facts & Figures 2016. American Cancer Society. 2016;Atlanta, GA.Google Scholar
  28. 28.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28. doi: 10.1056/NEJMoa1501824.CrossRefGoogle Scholar
  29. 29.
    Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26(10):2062–9. doi: 10.1021/acs.bioconjchem.5b00318.CrossRefGoogle Scholar
  30. 30.
    Hayashi T. Dysfunction of lacrimal and salivary glands in Sjogren's syndrome: nonimmunologic injury in preinflammatory phase and mouse model. J Biomed Biotechnol. 2011;2011:407031. doi: 10.1155/2011/407031.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Poluektova LY, Makarov E. Human peripheral blood lymphocyte reconstituion as a model of neuroinflammation associated with graft-versus-host disease. In: Xiong H, Gendelman HE, editors. Current laboratory methods in neuroscience research. New York: Springer; 2014. p. 487–90.Google Scholar
  32. 32.
    Reynders K, De Ruysscher D. Tumor infiltrating lymphocytes in lung cancer: a new prognostic parameter. J Thorac Dis. 2016;8(8):E833-5. doi: 10.21037/jtd.2016.07.75.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Christopher G. England
    • 1
  • Dawei Jiang
    • 2
    • 3
  • Emily B. Ehlerding
    • 1
  • Brian T. Rekoske
    • 4
  • Paul A. Ellison
    • 1
  • Reinier Hernandez
    • 1
  • Todd E. Barnhart
    • 1
  • Douglas G. McNeel
    • 4
    • 5
  • Peng Huang
    • 2
    Email author
  • Weibo Cai
    • 1
    • 3
    • 5
    Email author
  1. 1.Department of Medical PhysicsUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringHealth Science Center, Shenzhen UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of RadiologyUniversity of Wisconsin – MadisonMadisonUSA
  4. 4.Department of MedicineUniversity of Wisconsin – MadisonMadisonUSA
  5. 5.University of Wisconsin Carbone Cancer CenterMadisonUSA

Personalised recommendations