Early identification of MCI converting to AD: a FDG PET study



Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer’s disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not.


FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy.


The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients.


In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2011;32:2322.e19–e27. doi:10.1016/j.neurobiolaging.2010.05.023.

    Article  Google Scholar 

  2. 2.

    Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 2010;75:230–8. doi:10.1212/WNL.0b013e3181e8e8b8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–55. doi:10.1001/archneurol.2009.266.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, Piccini A, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hamel R, Kohler S, Sistermans N, Koene T, Pijnenburg Y, van der Flier W, et al. The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: findings from the 4C-MCI study. Psychol Med. 2015;45:1509–19. doi:10.1017/s0033291714002645.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252–65. doi:10.1111/j.1600-0447.2008.01326.x.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–9. doi:10.1001/archpsyc.63.3.273.

    Article  PubMed  Google Scholar 

  8. 8.

    Arbizu J, Prieto E, Martinez-Lage P, Marti-Climent JM, Garcia-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging. 2013;40:1394–405. doi:10.1007/s00259-013-2458-z.

    Article  PubMed  Google Scholar 

  9. 9.

    Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage. 2011;56:766–81. doi:10.1016/j.neuroimage.2010.06.013.

    Article  PubMed  Google Scholar 

  10. 10.

    Pagani M, De Carli F, Morbelli S, Oberg J, Chincarini A, Frisoni GB, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study. Neuroimage Clin. 2015;7:34–42. doi:10.1016/j.nicl.2014.11.007.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Runtti H, Mattila J, van Gils M, Koikkalainen J, Soininen H, Lotjonen J, et al. Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort. J Alzheimers Dis. 2014;39:49–61. doi:10.3233/JAD-130359.

    CAS  PubMed  Google Scholar 

  12. 12.

    Ardekani BA, Bermudez E, Mubeen AM, Bachman AH; Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimers Dis. 2017;55:269–81. doi:10.3233/JAD-160594.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lange C, Suppa P, Frings L, Brenner W, Spies L, Buchert R. Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion. J Alzheimers Dis. 2016;49:945–59. doi:10.3233/JAD-150814.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lee SH, Bachman AH, Yu D, Lim J, Ardekani BA. Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy. Alzheimers Dement (Amst). 2016;2:68–74. doi:10.1016/j.dadm.2016.01.003.

    Google Scholar 

  15. 15.

    Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266:583–91. doi:10.1148/radiol.12120010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Liu Y, Mattila J, Ruiz MA, Paajanen T, Koikkalainen J, van Gils M, et al. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool. PLoS One. 2013;8:e55246. doi:10.1371/journal.pone.0055246.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S, et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neuroimage Clin. 2013;2:735–45. doi:10.1016/j.nicl.2013.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Yu P, Dean RA, Hall SD, Qi Y, Sethuraman G, Willis BA, et al. Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. J Alzheimers Dis. 2012;32:373–85. doi:10.3233/JAD-2012-120832.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P, Schuff N, et al. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin. 2014;4:45–52. doi:10.1016/j.nicl.2013.10.018.

    Article  PubMed  Google Scholar 

  20. 20.

    Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Alzheimer’s disease neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412. doi:10.1016/j.neuroimage.2014.10.002.

    Article  PubMed  Google Scholar 

  21. 21.

    Haense C, Buerger K, Kalbe E, Drzezga A, Teipel SJ, Markiewicz P, et al. CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease. Eur J Neurol. 2008;15:1155–62. doi:10.1111/j.1468-1331.2008.02274.x.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, et al. Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging. 2010;31:1107–21. doi:10.1016/j.neurobiolaging.2008.08.013.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011;56:52–60. doi:10.1016/j.neuroimage.2011.01.049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ito K, Fukuyama H, Senda M, Ishii K, Maeda K, Yamamoto Y, et al. Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study. J Alzheimers Dis. 2015;45:543–52. doi:10.3233/JAD-141338.

    PubMed  Google Scholar 

  25. 25.

    Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain. 2009;132:2058–67. doi:10.1093/brain/awp132.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Pagani M, Giuliani A, Oberg J, Chincarini A, Morbelli S, Brugnolo A, et al. Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data. Neuroimage. 2016;141:282–90. doi:10.1016/j.neuroimage.2016.07.043.

    Article  PubMed  Google Scholar 

  27. 27.

    Pagani M, Giuliani A, Ӧberg J, De Carli F, Morbelli S, Girtler N, et al. Progressive disintegration of brain networking from normal aging to Alzheimer’s Disease. Analysis of Independent Components of 18F-FDG PET Data. J Nucl Med. 2017;58:1132–1139. doi:10.2967/jnumed.116.184309.

  28. 28.

    Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13:45–53.

    Article  PubMed  Google Scholar 

  29. 29.

    Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713. doi:10.1161/STR.0b013e3182299496.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Loeb C, Gandolfo C. Diagnostic evaluation of degenerative and vascular dementia. Stroke. 1983;14:399–401.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29. doi:10.1016/s1474-4422(14)70090-0.

    Article  PubMed  Google Scholar 

  33. 33.

    Picco A, Polidori MC, Ferrara M, Cecchetti R, Arnaldi D, Baglioni M, et al. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints. Eur J Nucl Med Mol Imaging. 2014;41:764–75. doi:10.1007/s00259-013-2638-x.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93. doi:10.1007/s12021-014-9235-4.

    Article  PubMed  Google Scholar 

  35. 35.

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. doi:10.1007/bf00994018.

    Google Scholar 

  37. 37.

    Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statist Sci. 2001;16:101–33. doi:10.1214/ss/1009213286.

    Google Scholar 

  38. 38.

    Qin G, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res. 2008;17:207–21. doi:10.1177/0962280207087173.

    Article  Google Scholar 

  39. 39.

    Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–49. doi:10.1001/jama.2015.4669.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600. doi:10.2967/jnumed.111.094946.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Dukart J, Mueller K, Villringer A, Kherif F, Draganski B, Frackowiak R, et al. Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer’s disease. Neuroimage Clin. 2013;3:84–94. doi:10.1016/j.nicl.2013.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS One. 2013;8:e77949. doi:10.1371/journal.pone.0077949.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Hinrichs C, Singh V, Xu G, Johnson SC. Alzheimers disease neuroimaging I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage. 2011;55:574–89. doi:10.1016/j.neuroimage.2010.10.081.

    Article  PubMed  Google Scholar 

  44. 44.

    Ritter K, Schumacher J, Weygandt M, Buchert R, Allefeld C, Haynes JD. Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers. Alzheimers Dement (Amst). 2015;1:206–15. doi:10.1016/j.dadm.2015.01.006.

    Google Scholar 

  45. 45.

    Sanchez-Catasus CA, Stormezand GN, van Laar PJ, De Deyn PP, Sanchez MA, Dierckx RA. FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14:127–42.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Rizk-Jackson A, Insel P, Petersen R, Aisen P, Jack C, Weiner M. Early indications of future cognitive decline: stable versus declining controls. PLoS One. 2013;8:e74062. doi:10.1371/journal.pone.0074062.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Scola E, Bozzali M, Agosta F, Magnani G, Franceschi M, Sormani MP, et al. A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J Neurol Neurosurg Psychiatry. 2010;81:798–805. doi:10.1136/jnnp.2009.189639.

    Article  PubMed  Google Scholar 

  48. 48.

    Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features. Front Aging Neurosci. 2016;8:76. doi:10.3389/fnagi.2016.00076.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47:1196–206. doi:10.1016/j.neuroimage.2009.05.037.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Teipel SJ, Kurth J, Krause B, Grothe MJ; Alzheimer’s Disease Neuroimaging Initiative. The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment – beyond classical regression. Neuroimage Clin. 2015;8:583–93. doi:10.1016/j.nicl.2015.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Brendel M, Reinisch V, Kalinowski E, Levin J, Delker A, Darr S, et al. Hypometabolism in brain of cognitively normal patients with depressive symptoms is accompanied by atrophy-related partial volume effects. Curr Alzheimer Res. 2016;13:475–86.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Seo SW, Cho SS, Park A, Chin J, Na DL. Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging. 2009;19:213–9. doi:10.1111/j.1552-6569.2008.00292.x.

    Article  PubMed  Google Scholar 

  53. 53.

    Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010;51:654–64. doi:10.1016/j.neuroimage.2010.02.064.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Frisoni GB, Bocchetta M, Chetelat G, Rabinovici GD, de Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs how. Neurology. 2013;81:487–500. doi:10.1212/WNL.0b013e31829d86e8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–195. doi:10.1016/j.neurobiolaging.2016.03.033

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank Ms. Katja Gasperini for helping with the English editing.

Author information



Corresponding author

Correspondence to Marco Pagani.

Ethics declarations


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagani, M., Nobili, F., Morbelli, S. et al. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging 44, 2042–2052 (2017). https://doi.org/10.1007/s00259-017-3761-x

Download citation


  • Alzheimer’s disease
  • Mild cognitive impairment
  • Conversion to AD
  • Positron emission tomography
  • Support vector machine
  • Volume of interest analysis