Advertisement

Evaluating tumor response with FDG PET: updates on PERCIST, comparison with EORTC criteria and clues to future developments

  • Katja Pinker
  • Christopher Riedl
  • Wolfgang A. WeberEmail author
Review Article

Abstract

Eighteen years ago, the EORTC PET criteria standardized for the first time response assessment by FDG PET. Response assessment by FDG PET has been further developed and refined by PERCIST (PET response criteria in solid tumors). This review describes the data underlying these two systems for assessing tumor response on FDG PET/CT. It also summarizes recent clinical studies that have compared EORTC criteria and PERCIST with each other as well as with the anatomically based “response criteria in solid tumors” (RECIST). These studies have shown that response assessment by EORTC criteria and PERCIST leads to very similar response classifications. In contrast, there are significant differences between response assessment by PERCIST and RECIST. Preliminary data also suggest that response assessment by PERCIST is better correlated with patient outcome and may be a better predictor for the effectiveness of new anti-cancer therapies than RECIST. If correct, this could have a significant impact on oncologic drug development. However, confirmation of the better predictive value of response assessment by PERCIST by data from randomized trials is still lacking.

Keywords

FDG PET PERCIST EORTC criteria Oncology Treatment monitoring 

Notes

Compliance with ethical standards

Conflict of interest

Author Katja Pinker declares that she has no conflict of interest. Author Christopher C Riedl declares that he has no conflict of interest. Author Wolfgang A Weber declares that he has no conflict of interest.

References

  1. 1.
    WHO handbook for reporting results of cancer treatment. Geneva (Switzerland): World Health Organization; 1979.Google Scholar
  2. 2.
    Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.CrossRefGoogle Scholar
  4. 4.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47. doi: 10.1016/j.ejca.2008.10.026.CrossRefPubMedGoogle Scholar
  5. 5.
    Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer. 2006;42:1031–9. doi: 10.1016/j.ejca.2006.01.026.CrossRefPubMedGoogle Scholar
  6. 6.
    Buyse M, Sargent DJ, Grothey A, Matheson A, de Gramont A. Biomarkers and surrogate end points--the challenge of statistical validation. Nat Rev Clin Oncol. 2010;7:309–17. doi: 10.1038/nrclinonc.2010.43.CrossRefPubMedGoogle Scholar
  7. 7.
    An MW, Dong X, Meyers J, Han Y, Grothey A, Bogaerts J, et al. Evaluating Continuous Tumor Measurement-Based Metrics as Phase II Endpoints for Predicting Overall Survival. J Natl Cancer Inst. 2015;107. doi: 10.1093/jnci/djv239
  8. 8.
    An MW, Han Y, Meyers JP, Bogaerts J, Sargent DJ, Mandrekar SJ. Clinical Utility of Metrics Based on Tumor Measurements in Phase II Trials to Predict Overall Survival Outcomes in Phase III Trials by Using Resampling Methods. J Clin Oncol. 2015;33:4048–57. doi: 10.1200/jco.2015.60.8778.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35:1773–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50S. doi: 10.2967/jnumed.108.057307.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O JH, Lodge MA, Wahl RL. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology. 2016;280:576–84. doi: 10.1148/radiol.2016142043.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53:701–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Rockall AG, Avril N, Lam R, Iannone R, Mozley PD, Parkinson C, et al. Repeatability of quantitative FDG-PET/CT and contrast-enhanced CT in recurrent ovarian carcinoma: test-retest measurements for tumor FDG uptake, diameter, and volume. Clin Cancer Res. 2014;20:2751–60.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, et al. Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med. 2009;50:1646–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Weber WA, Gatsonis CA, Mozley PD, Hanna LG, Shields AF, Aberle DR, et al. Repeatability of 18F-FDG PET/CT in Advanced Non-Small Cell Lung Cancer: Prospective Assessment in 2 Multicenter Trials. J Nucl Med. 2015;56:1137–43. doi: 10.2967/jnumed.114.147728.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Pinker K, Riedl CC, Ong L, Jochelson M, Ulaner GA, McArthur H, et al. The Impact That Number of Analyzed Metastatic Breast Cancer Lesions Has on Response Assessment by 18F-FDG PET/CT Using PERCIST. J Nucl Med. 2016;57:1102–4. doi: 10.2967/jnumed.115.166629.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aras M, Erdil TY, Dane F, Gungor S, Ones T, Dede F, et al. Comparison of WHO, RECIST 1.1, EORTC, and PERCIST criteria in the evaluation of treatment response in malignant solid tumors. Nucl Med Commun. 2016;37:9–15. doi: 10.1097/mnm.0000000000000401.PubMedGoogle Scholar
  18. 18.
    Banna GL, Anile G, Russo G, Vigneri P, Castaing M, Nicolosi M, et al. Predictive and Prognostic Value of Early Disease Progression by PET Evaluation in Advanced Non-Small Cell Lung Cancer. Oncology. 2017;92:39–47. doi: 10.1159/000448005.CrossRefPubMedGoogle Scholar
  19. 19.
    Ho KC, Fang YD, Chung HW, Liu YC, Chang JW, Hou MM, et al. TLG-S criteria are superior to both EORTC and PERCIST for predicting outcomes in patients with metastatic lung adenocarcinoma treated with erlotinib. Eur J Nucl Med Mol Imaging. 2016;43:2155–65. doi: 10.1007/s00259-016-3433-2.CrossRefPubMedGoogle Scholar
  20. 20.
    Kerner GS, Koole MJ, Bongaerts AH, Pruim J, Groen HJ. Total Body Metabolic Tumor Response in ALK Positive Non-Small Cell Lung Cancer Patients Treated with ALK Inhibition. PLoS One. 2016;11:e0149955. doi: 10.1371/journal.pone.0149955.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shang J, Ling X, Zhang L, Tang Y, Xiao Z, Cheng Y, et al. Comparison of RECIST, EORTC criteria and PERCIST for evaluation of early response to chemotherapy in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:1945–53. doi: 10.1007/s00259-016-3420-7.CrossRefPubMedGoogle Scholar
  22. 22.
    Skougaard K, Nielsen D, Jensen BV, Hendel HW. Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. J Nucl Med. 2013;54:1026–31. doi: 10.2967/jnumed.112.111757.CrossRefPubMedGoogle Scholar
  23. 23.
    Tateishi U, Miyake M, Nagaoka T, Terauchi T, Kubota K, Kinoshita T, et al. Neoadjuvant chemotherapy in breast cancer: prediction of pathologic response with PET/CT and dynamic contrast-enhanced MR imaging--prospective assessment. Radiology. 2012;263:53–63. doi: 10.1148/radiol.12111177.CrossRefPubMedGoogle Scholar
  24. 24.
    Thacker CA, Weiss GJ, Tibes R, Blaydorn L, Downhour M, White E, et al. 18-FDG PET/CT assessment of basal cell carcinoma with vismodegib. Cancer Med. 2012;1:230–6. doi: 10.1002/cam4.33.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Tokes T, Szentmartoni G, Torgyik L, Somlai K, Kulka J, Lengyel Z, et al. Complexity of Response Evaluation During Primary Systemic Therapy of Breast Cancer: Scoring Systems and Beyond-Preliminary Results. Anticancer Res. 2015;35:5063–72.PubMedGoogle Scholar
  26. 26.
    Ziai D, Wagner T, El Badaoui A, Hitzel A, Woillard JB, Melloni B, et al. Therapy response evaluation with FDG-PET/CT in small cell lung cancer: a prognostic and comparison study of the PERCIST and EORTC criteria. Cancer Imaging. 2013;13:73–80. doi: 10.1102/1470-7330.2013.0008.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim JH. Comparison of the EORTC criteria and PERCIST in solid tumors: a pooled analysis and review. Oncotarget. 2016;7:58105–10. doi: 10.18632/oncotarget.11171.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fledelius J, Khalil A, Hjorthaug K, Frokiaer J. Inter-observer agreement improves with PERCIST 1.0 as opposed to qualitative evaluation in non-small cell lung cancer patients evaluated with F-18-FDG PET/CT early in the course of chemo-radiotherapy. EJNMMI Res. 2016;6:71. doi: 10.1186/s13550-016-0223-6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hicks RJ, Kalff V, MacManus MP, Ware RE, McKenzie AF, Matthews JP, et al. The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med. 2001;42:1605–13.PubMedGoogle Scholar
  30. 30.
    Monzon JG, Hay AE, McDonald GT, Pater JL, Meyer RM, Chen E, et al. Correlation of single arm versus randomised phase 2 oncology trial characteristics with phase 3 outcome. Eur J Cancer. 2015;51:2501–7. doi: 10.1016/j.ejca.2015.08.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Vickers AJ, Ballen V, Scher HI. Setting the bar in phase II trials: the use of historical data for determining "go/no go" decision for definitive phase III testing. Clin Cancer Res. 2007;13:972–6. doi: 10.1158/1078-0432.ccr-06-0909.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gan HK, You B, Pond GR, Chen EX. Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst. 2012;104:590–8. doi: 10.1093/jnci/djs141.CrossRefPubMedGoogle Scholar
  33. 33.
    Andrews A. Treating with Checkpoint Inhibitors-Figure $1 Million per Patient. Am Health Drug Benefits. 2015;8:9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bruzzi P, Del Mastro L, Sormani MP, Bastholt L, Danova M, Focan C, et al. Objective response to chemotherapy as a potential surrogate end point of survival in metastatic breast cancer patients. J Clin Oncol. 2005;23:5117–25. doi: 10.1200/jco.2005.02.106.CrossRefPubMedGoogle Scholar
  35. 35.
    Burzykowski T, Buyse M, Piccart-Gebhart MJ, Sledge G, Carmichael J, Luck HJ, et al. Evaluation of tumor response, disease control, progression-free survival, and time to progression as potential surrogate end points in metastatic breast cancer. J Clin Oncol. 2008;26:1987–92. doi: 10.1200/jco.2007.10.8407.CrossRefPubMedGoogle Scholar
  36. 36.
    Saad ED, Paoletti X, Burzykowski T, Buyse M. Precision medicine needs randomized clinical trials. Nat Rev Clin Oncol. 2017. doi: 10.1038/nrclinonc.2017.8.Google Scholar
  37. 37.
    Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384:164–72. doi: 10.1016/s0140-6736(13)62422-8.CrossRefPubMedGoogle Scholar
  38. 38.
    Broglio KR, Quintana M, Foster M, Olinger M, McGlothlin A, Berry SM, et al. Association of Pathologic Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer With Long-Term Outcomes: A Meta-Analysis. JAMA Oncol. 2016;2:751–60. doi: 10.1001/jamaoncol.2015.6113.CrossRefPubMedGoogle Scholar
  39. 39.
    Morris PG, Lynch C, Feeney JN, Patil S, Howard J, Larson SM, et al. Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol. 2010;28:3154–9. doi: 10.1200/jco.2009.27.5743.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cook GJ, Azad GK, Goh V. Imaging Bone Metastases in Breast Cancer: Staging and Response Assessment. J Nucl Med. 2016;57 Suppl 1:27S–33S. doi: 10.2967/jnumed.115.157867.CrossRefPubMedGoogle Scholar
  41. 41.
    Rinke A, Muller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–63. doi: 10.1200/jco.2009.22.8510.CrossRefPubMedGoogle Scholar
  42. 42.
    Ciuleanu TE, Pavlovsky AV, Bodoky G, Garin AM, Langmuir VK, Kroll S, et al. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer. 2009;45:1589–96. doi: 10.1016/j.ejca.2008.12.022.CrossRefPubMedGoogle Scholar
  43. 43.
    Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366:1527–37. doi: 10.1016/s0140-6736(05)67625-8.CrossRefGoogle Scholar
  44. 44.
    Paz-Ares L, Hirsh V, Zhang L, de Marinis F, Yang JC, Wakelee HA, et al. Monotherapy Administration of Sorafenib in Patients With Non-Small Cell Lung Cancer (MISSION) Trial: A Phase III, Multicenter, Placebo-Controlled Trial of Sorafenib in Patients with Relapsed or Refractory Predominantly Nonsquamous Non-Small-Cell Lung Cancer after 2 or 3 Previous Treatment Regimens. J Thorac Oncol. 2015;10:1745–53. doi: 10.1097/jto.0000000000000693.CrossRefPubMedGoogle Scholar
  45. 45.
    Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66. doi: 10.1016/s0140-6736(16)32453-9.CrossRefPubMedGoogle Scholar
  46. 46.
    Stefano A, Russo G, Ippolito M, Cosentino S, Mure G, Baldari S, et al. Evaluation of erlotinib treatment response in non-small cell lung cancer using metabolic and anatomic criteria. Q J Nucl Med Mol Imaging. 2016;60:264–73.PubMedGoogle Scholar
  47. 47.
    Camacho JC, Kokabi N, Xing M, Schuster DM, Kim HS. PET response criteria for solid tumors predict survival at three months after intra-arterial resin-based 90Yttrium radioembolization therapy for unresectable intrahepatic cholangiocarcinoma. Clin Nucl Med. 2014;39:944–50. doi: 10.1097/rlu.0000000000000557.CrossRefPubMedGoogle Scholar
  48. 48.
    Dercle L, Chisin R, Ammari S, Gillebert Q, Ouali M, Jaudet C, et al. Nonsurgical giant cell tumour of the tendon sheath or of the diffuse type: are MRI or 18F-FDG PET/CT able to provide an accurate prediction of long-term outcome? Eur J Nucl Med Mol Imaging. 2015;42:397–408. doi: 10.1007/s00259-014-2938-9.CrossRefPubMedGoogle Scholar
  49. 49.
    Ding Q, Cheng X, Yang L, Zhang Q, Chen J, Li T, et al. PET/CT evaluation of response to chemotherapy in non-small cell lung cancer: PET response criteria in solid tumors (PERCIST) versus response evaluation criteria in solid tumors (RECIST). J Thorac Dis. 2014;6:677–83. doi: 10.3978/j.issn.2072-1439.2014.05.10.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Edalat F, Camacho JC, Kokabi N, Kendi AT, Galt JR, Kim HS. Standardized Added Metabolic Activity Predicts Survival After Intra-arterial Resin-Based 90Y Radioembolization Therapy in Unresectable Chemorefractory Metastatic Colorectal Cancer to the Liver. Clin Nucl Med. 2016;41:e76–81. doi: 10.1097/rlu.0000000000000991.CrossRefPubMedGoogle Scholar
  51. 51.
    Fayda M, Isin M, Tambas M, Guveli M, Meral R, Altun M, et al. Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumour Biol. 2016;37:3969–78. doi: 10.1007/s13277-015-4189-1.CrossRefPubMedGoogle Scholar
  52. 52.
    Fendler WP, Lehmann M, Todica A, Herrmann K, Knosel T, Angele MK, et al. PET response criteria in solid tumors predicts progression-free survival and time to local or distant progression after chemotherapy with regional hyperthermia for soft-tissue sarcoma. J Nucl Med. 2015;56:530–7. doi: 10.2967/jnumed.114.152462.CrossRefPubMedGoogle Scholar
  53. 53.
    Hadoux J, Favier J, Scoazec JY, Leboulleux S, Al Ghuzlan A, Caramella C, et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer. 2014;135:2711–20. doi: 10.1002/ijc.28913.CrossRefPubMedGoogle Scholar
  54. 54.
    Martins EB, Chojniak R, Kowalski LP, Nicolau UR, Lima EN, Bitencourt AG. Diffusion-Weighted MRI in the Assessment of Early Treatment Response in Patients with Squamous-Cell Carcinoma of the Head and Neck: Comparison with Morphological and PET/CT Findings. PLoS One. 2015;10:e0140009. doi: 10.1371/journal.pone.0140009.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ordu C, Selcuk NA, Akosman C, Eren OO, Altunok EC, Toklu T, et al. Comparison of metabolic and anatomic response to chemotherapy based on PERCIST and RECIST in patients with advanced stage non-small cell lung cancer. Asian Pac J Cancer Prev. 2015;16:321–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Petullo B, Wei L, Yereb M, Neal A, Rose J, Bekaii-Saab T, et al. A phase II study of biweekly pralatrexate and docetaxel in patients with advanced esophageal and gastroesophageal carcinoma that have failed first-line platinum-based therapy. J Gastrointest Oncol. 2015;6:336–40. doi: 10.3978/j.issn.2078-6891.2015.011.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Skougaard K, Johannesen HH, Nielsen D, Schou JV, Jensen BV, Hogdall EV, et al. CT versus FDG-PET/CT response evaluation in patients with metastatic colorectal cancer treated with irinotecan and cetuximab. Cancer Med. 2014;3:1294–301. doi: 10.1002/cam4.271.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sofocleous CT, Garcia AR, Pandit-Taskar N, Do KG, Brody LA, Petre EN, et al. Phase I trial of selective internal radiation therapy for chemorefractory colorectal cancer liver metastases progressing after hepatic arterial pump and systemic chemotherapy. Clin Colorectal Cancer. 2014;13:27–36. doi: 10.1016/j.clcc.2013.11.010.CrossRefPubMedGoogle Scholar
  59. 59.
    Tauhardt E, Reissig A, Winkens T, Freesmeyer M. Early detection of disease progression after palliative chemotherapy in NSCLC patients by (18)F-FDG-PET. Nuklearmedizin. 2014;53:197–204. doi: 10.3413/Nukmed-0644-14-01.CrossRefPubMedGoogle Scholar
  60. 60.
    Yanagawa M, Tatsumi M, Miyata H, Morii E, Tomiyama N, Watabe T, et al. Evaluation of response to neoadjuvant chemotherapy for esophageal cancer: PET response criteria in solid tumors versus response evaluation criteria in solid tumors. J Nucl Med. 2012;53:872–80. doi: 10.2967/jnumed.111.098699.CrossRefPubMedGoogle Scholar
  61. 61.
    Zwitter M, Rajer M, Stanic K, Vrankar M, Doma A, Cuderman A, et al. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations. Cancer Biol Ther. 2016;17:833–9. doi: 10.1080/15384047.2016.1195049.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Min SJ, Jang HJ, Kim JH. Comparison of the RECIST and PERCIST criteria in solid tumors: a pooled analysis and review. Oncotarget. 2016;7:27848–54. doi: 10.18632/oncotarget.8425.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Agrawal A, Purandare N, Shah S, Puranik A, Banavali S, Rangarajan V. Response assessment in metronomic chemotherapy: RECIST or PERCIST? Indian J Nucl Med. 2014;29:74–80. doi: 10.4103/0972-3919.130285.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Koshkin VS, Bolejack V, Schwartz LH, Wahl RL, Chugh R, Reinke DK, et al. Assessment of Imaging Modalities and Response Metrics in Ewing Sarcoma: Correlation With Survival. J Clin Oncol. 2016. doi: 10.1200/jco.2016.68.1858.PubMedGoogle Scholar
  65. 65.
    Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9. doi: 10.1200/jco.2006.07.3049.CrossRefPubMedGoogle Scholar
  66. 66.
    Kim MN, Kim BK, Han KH, Kim SU. Evolution from WHO to EASL and mRECIST for hepatocellular carcinoma: considerations for tumor response assessment. Expert Rev Gastroenterol Hepatol. 2015;9:335–48. doi: 10.1586/17474124.2015.959929.CrossRefPubMedGoogle Scholar
  67. 67.
    Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16:e270–8. doi: 10.1016/s1470-2045(15)70057-4.CrossRefPubMedGoogle Scholar
  68. 68.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20. doi: 10.1158/1078-0432.ccr-09-1624.CrossRefPubMedGoogle Scholar
  69. 69.
    Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–96. doi: 10.1182/blood-2016-05-718528.CrossRefPubMedGoogle Scholar
  70. 70.
    Frederickson J, Callahan J, Funke R, Sanabria S, Weber W, de Crespigny A, et al. Utility of FDG-PET in immunotherapy: results from a Phase II study of NSCLC patients undergoing therapy with the PD-L1 inhibitor, atezolizumab (MPDL3280A). J Nucl Med. 2016;57 suppl 2:134.Google Scholar
  71. 71.
    Johnson P, Federico M, Kirkwood A, Fossa A, Berkahn L, Carella A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N Engl J Med. 2016;374:2419–29. doi: 10.1056/NEJMoa1510093.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lordick F, Ott K, Krause BJ, Weber WA, Becker K, Stein HJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol. 2007;8:797–805. doi: 10.1016/s1470-2045(07)70244-9.CrossRefPubMedGoogle Scholar
  73. 73.
    Coudert B, Pierga JY, Mouret-Reynier MA, Kerrou K, Ferrero JM, Petit T, et al. Use of [(18)F]-FDG PET to predict response to neoadjuvant trastuzumab and docetaxel in patients with HER2-positive breast cancer, and addition of bevacizumab to neoadjuvant trastuzumab and docetaxel in [(18)F]-FDG PET-predicted non-responders (AVATAXHER): an open-label, randomised phase 2 trial. Lancet Oncol. 2014;15:1493–502. doi: 10.1016/s1470-2045(14)70475-9.CrossRefPubMedGoogle Scholar
  74. 74.
    Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 2006;12:5659–67.CrossRefPubMedGoogle Scholar
  75. 75.
    Wei LH, Su H, Hildebrandt IJ, Phelps ME, Czernin J, Weber WA. Changes in tumor metabolism as readout for Mammalian target of rapamycin kinase inhibition by rapamycin in glioblastoma. Clin Cancer Res. 2008;14:3416–26. doi: 10.1158/1078-0432.CCR-07-1824.CrossRefPubMedGoogle Scholar
  76. 76.
    Ma WW, Jacene H, Song D, Vilardell F, Messersmith WA, Laheru D, et al. [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol. 2009;27:2697–704. doi: 10.1200/jco.2008.18.8383.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Katja Pinker
    • 1
  • Christopher Riedl
    • 1
  • Wolfgang A. Weber
    • 1
    Email author
  1. 1.Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations