Skip to main content

Advertisement

Log in

An update on the role of PET/CT and PET/MRI in ovarian cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as 18F-fluorothymidine (FLT) or 11C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Mohaghegh P, Rockall AG. Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics: Rev Publ Radiol Soc N Am Inc. 2012;32:1751–73. doi:10.1148/rg.326125520.

    Article  Google Scholar 

  3. Forstner R, Sala E, Kinkel K, Spencer JA. European Society of Urogenital R. ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol. 2010;20:2773–80. doi:10.1007/s00330-010-1886-4.

    Article  PubMed  Google Scholar 

  4. Mitchell DG, Javitt MC, Glanc P, Bennett GL, Brown DL, Dubinsky T, et al. ACR appropriateness criteria staging and follow-up of ovarian cancer. J Am Coll Radiol: JACR. 2013;10:822–7. doi:10.1016/j.jacr.2013.07.017.

    Article  PubMed  Google Scholar 

  5. Bandiera E, Romani C, Specchia C, Zanotti L, Galli C, Ruggeri G, et al. Serum human epididymis protein 4 and risk for ovarian malignancy algorithm as new diagnostic and prognostic tools for epithelial ovarian cancer management. Cancer Epidemiol Biomark Prev: Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2011;20:2496–506. doi:10.1158/1055-9965.EPI-11-0635.

    Article  CAS  Google Scholar 

  6. Holcomb K, Vucetic Z, Miller MC, Knapp RC. Human epididymis protein 4 offers superior specificity in the differentiation of benign and malignant adnexal masses in premenopausal women. Am J Obstet Gynecol. 2011;205:358 e1-6. doi:10.1016/j.ajog.2011.05.017.

    Article  PubMed  CAS  Google Scholar 

  7. Outwater EK, Dunton CJ. Imaging of the ovary and adnexa: clinical issues and applications of MR imaging. Radiology. 1995;194:1–18.

    Article  CAS  PubMed  Google Scholar 

  8. Grab D, Flock F, Stöhr I, Nüssle K, Rieber A, Fenchel S, et al. Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol. 2000;77:454–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kim SK, Kang KW, Roh JW, Sim JS, Lee ES, Park SY. Incidental ovarian 18F-FDG accumulation on PET: correlation with the menstrual cycle. Eur J Nucl Med Mol Imaging. 2005;32:757–63. doi:10.1007/s00259-005-1771-6.

    Article  CAS  PubMed  Google Scholar 

  10. Short S, Hoskin P, Wong W. Ovulation and increased FDG uptake on PET: potential for a false-positive result. Clin Nucl Med. 2005;30:707.

    Article  CAS  PubMed  Google Scholar 

  11. Yun M, Cho A, Lee JH, Choi YJ, Lee JD, Kim CK. Physiologic 18F-FDG uptake in the fallopian tubes at mid cycle on PET/CT. J Nucl Med: Off Publ Soc Nucl Med. 2010;51:682–5. doi:10.2967/jnumed.109.074484.

    Article  Google Scholar 

  12. Nishizawa S, Inubushi M, Ozawa F, Kido A, Okada H. Physiological FDG uptake in the ovaries after hysterectomy. Ann Nucl Med. 2007;21:345–8. doi:10.1007/s12149-007-0029-8.

    Article  PubMed  Google Scholar 

  13. Shaaban A, Rezvani M. Ovarian cancer: detection and radiologic staging. Top Magn Reson Imaging. 2010;21:247–59.

    Article  PubMed  Google Scholar 

  14. Shaaban A, Rezvani M. Ovarian cancer: detection and radiologic staging. Clin Obstet Gynecol. 2009;52:73–93.

    Article  PubMed  Google Scholar 

  15. Schorge JO, Modesitt SC, Coleman RL, Cohn DE, Kauff ND, Duska LR, et al. SGO white paper on ovarian cancer: etiology, screening and surveillance. Gynecol Oncol. 2010;119:7–17. doi:10.1016/j.ygyno.2010.06.003.

    Article  PubMed  Google Scholar 

  16. Brown DL, Andreotti RF, Lee SI, Dejesus Allison SO, Bennett GL, Dubinsky T, et al. ACR appropriateness criteria(c) ovarian cancer screening. Ultrasound Q. 2010;26:219–23. doi:10.1097/RUQ.0b013e3181fdd604.

    Article  PubMed  Google Scholar 

  17. Sohaib SA, Mills TD, Sahdev A, Webb JA, Vantrappen PO, Jacobs IJ, et al. The role of magnetic resonance imaging and ultrasound in patients with adnexal masses. Clin Radiol. 2005;60:340–8. doi:10.1016/j.crad.2004.09.007.

    Article  CAS  PubMed  Google Scholar 

  18. Anthoulakis C, Nikoloudis N. Pelvic MRI as the “gold standard” in the subsequent evaluation of ultrasound-indeterminate adnexal lesions: a systematic review. Gynecol Oncol. 2014;132:661–8. doi:10.1016/j.ygyno.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang P, Cui Y, Li W, Ren G, Chu C, Wu X. Diagnostic accuracy of diffusion-weighted imaging with conventional MR imaging for differentiating complex solid and cystic ovarian tumors at 1.5T. World J Surg Oncol. 2012;10:237. doi:10.1186/1477-7819-10-237.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ko SM, Jung DC, Oh YT, Kim SH, Kang S. Discrepancy between preoperative imaging and surgical findings in patients with advanced ovarian cancer: a study of initial false-negative lesions. J Comput Assist Tomogr. 2013;37:568–71. doi:10.1097/RCT.0b013e31828b683b.

    Article  PubMed  Google Scholar 

  21. Nam EJ, Yun MJ, Oh YT, Kim JW, Kim JH, Kim S, et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol. 2010;116:389–94. doi:10.1016/j.ygyno.2009.10.059.

    Article  PubMed  Google Scholar 

  22. Castellucci P, Perrone AM, Picchio M, Ghi T, Farsad M, Nanni C, et al. Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun. 2007;28:589–95. doi:10.1097/MNM.0b013e3281afa256.

    Article  CAS  PubMed  Google Scholar 

  23. Hubner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18 F] deoxyglucose (2-[18 F] FDG). Gynecol Oncol. 1993;51:197–204.

    Article  CAS  PubMed  Google Scholar 

  24. Lapela M, Leskinen-Kallio S, Varpula M, Grénman S, Salmi T, Alanen K, et al. Metabolic imaging of ovarian tumors with carbon-11-methionine: a PET study. J Nucl Med: Off Publ Soc Nucl Med. 1995;36:2196–200.

    CAS  Google Scholar 

  25. Kitajima K, Suzuki K, Senda M, Kita M, Nakamoto Y, Onishi Y, et al. FDG-PET/CT for diagnosis of primary ovarian cancer. Nucl Med Commun. 2011;32:549–53. doi:10.1097/MNM.0b013e328345b339.

    Article  PubMed  Google Scholar 

  26. Tanizaki Y, Kobayashi A, Shiro M, Ota N, Takano R, Mabuchi Y, et al. Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2014;24:454–60. doi:10.1097/IGC.0000000000000074.

    Article  Google Scholar 

  27. Yamamoto Y, Oguri H, Yamada R, Maeda N, Kohsaki S, Fukaya T. Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography. Int J Gynaecol Obstet: Off Organ Int Fed Gynaecol Obstet. 2008;102:124–7. doi:10.1016/j.ijgo.2008.02.019.

    Article  Google Scholar 

  28. Karantanis D, Allen-Auerbach M, Czernin J. Relationship among glycolytic phenotype, grade, and histological subtype in ovarian carcinoma. Clin Nucl Med. 2012;37:49–53. doi:10.1097/RLU.0b013e3182291e03.

    Article  PubMed  Google Scholar 

  29. Schwarz JK, Grigsby PW, Dehdashti F, Delbeke D. The role of 18F-FDG PET in assessing therapy response in cancer of the cervix and ovaries. J Nucl Med: Off Publ Soc Nucl Med. 2009;50 Suppl 1:64S–73. doi:10.2967/jnumed.108.057257.

    Article  CAS  Google Scholar 

  30. Benedet JL, Bender H, Jones 3rd H, Ngan HY, Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet: Off Org Int Fed Gynaecol Obstet. 2000;70:209–62.

    Article  CAS  Google Scholar 

  31. Edge SBBD, Compton CC, Fritz AG, Greene FL, Trotti A. Ovary and primary peritoneal carcinoma. In: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, editors. AJCC cancer staging manual. New York: Springer; 2010. p. 419–28.

    Google Scholar 

  32. Stevens S, Hricak H, Stern J. Ovarian lesions: detection and characterization with gadolinium-enhanced MR imaging at 1.5 T. Radiology. 1991;181:481–8.

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita Y, Torashima M, Hatanaka Y, Harada M, Higashida Y, Takahashi M, et al. Adnexal masses: accuracy of characterization with transvaginal US and precontrast and postcontrast MR imaging. Radiology. 1995;194:557–65.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura K, Hongo A, Kodama J, Hiramatsu Y. The pretreatment of maximum standardized uptake values (SUVmax) of the primary tumor is predictor for poor prognosis for patients with epithelial ovarian cancer. Acta Med Okayama. 2012;66:53–60.

    PubMed  Google Scholar 

  35. Signorelli M, Guerra L, Pirovano C, Crivellaro C, Fruscio R, Buda A, et al. Detection of nodal metastases by 18F-FDG PET/CT in apparent early stage ovarian cancer: a prospective study. Gynecol Oncol. 2013;131:395–9. doi:10.1016/j.ygyno.2013.08.022.

    Article  PubMed  Google Scholar 

  36. Kitajima K, Murakami K, Yamasaki E, Kaji Y, Fukasawa I, Inaba N, et al. Diagnostic accuracy of integrated FDG-PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur J Nucl Med Mol Imaging. 2008;35:1912–20. doi:10.1007/s00259-008-0890-2.

    Article  PubMed  Google Scholar 

  37. Avril N, Gourtsoyianni S, Reznek R. Gynecological cancers. Methods Mol Biol. 2011;727:171–89. doi:10.1007/978-1-61779-062-1_10.

    Article  PubMed  Google Scholar 

  38. Dauwen H, Van Calster B, Deroose CM, Op de Beeck K, Amant F, Neven P, et al. PET/CT in the staging of patients with a pelvic mass suspicious for ovarian cancer. Gynecol Oncol. 2013;131:694–700. doi:10.1016/j.ygyno.2013.08.020.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan Y, Gu ZX, Tao XF, Liu SY. Computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with ovarian cancer: a meta-analysis. Eur J Radiol. 2012;81:1002–6. doi:10.1016/j.ejrad.2011.01.112.

    Article  PubMed  Google Scholar 

  40. Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24:889–901. doi:10.1007/s00330-013-3083-8.

    Article  PubMed  Google Scholar 

  41. De Iaco P, Musto A, Orazi L, Zamagni C, Rosati M, Allegri V, et al. FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol. 2011;80:e98–103. doi:10.1016/j.ejrad.2010.07.013.

    Article  PubMed  Google Scholar 

  42. Mahmoud HA, Atta H, Diab WA, Eloteify LM, Imam H, Gabr A, et al. The predominant role of 18F-FDG PET/CT over MDCT in assessment of ovarian cancer patients. The Egypt J Radiol Nucl Med. 2015;46:1313–22. doi:10.1016/j.ejrnm.2015.07.011.

    Article  Google Scholar 

  43. Martoni AA, Fanti S, Zamagni C, Rosati M, De Iaco P, D’Errico Grigioni A, et al. [18F]FDG-PET/CT monitoring early identifies advanced ovarian cancer patients who will benefit from prolonged neo-adjuvant chemotherapy. Q J Nucl Med Mol Imaging: Off Publ Ital Assoc Nucl Med. 2011;55:81–90.

    CAS  Google Scholar 

  44. Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23:7445–53. doi:10.1200/JCO.2005.06.965.

    Article  Google Scholar 

  45. Vallius T, Peter A, Auranen A, Carpén O, Kemppainen J, Matomäki J, et al. 18 F-FDG-PET/CT can identify histopathological non-responders to platinum-based neoadjuvant chemotherapy in advanced epithelial ovarian cancer. Gynecol Oncol. 2016;140:29–35.

    Article  PubMed  Google Scholar 

  46. Picchio M, Sironi S, Messa C, Mangili G, Landoni C, Gianolli L, et al. Advanced ovarian carcinoma: usefulness of [(18)F]FDG-PET in combination with CT for lesion detection after primary treatment. Q J Nucl Med: Off Publ Ital Assoc Nucl Med. 2003;47:77–84.

    CAS  Google Scholar 

  47. Sironi S, Messa C, Mangili G, Zangheri B, Aletti G, Garavaglia E, et al. Integrated FDG PET/CT in patients with persistent ovarian cancer: correlation with histologic findings. Radiology. 2004;233:433–40. doi:10.1148/radiol.2332031800.

    Article  PubMed  Google Scholar 

  48. Nishiyama Y, Yamamoto Y, Kanenishi K, Ohno M, Hata T, Kushida Y, et al. Monitoring the neoadjuvant therapy response in gynecological cancer patients using FDG PET. Eur J Nucl Med Mol Imaging. 2008;35:287–95. doi:10.1007/s00259-007-0627-7.

    Article  PubMed  Google Scholar 

  49. Kim S, Chung JK, Kang SB, Kim MH, Jeong JM, Lee DS, et al. [18F]FDG PET as a substitute for second-look laparotomy in patients with advanced ovarian carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:196–201. doi:10.1007/s00259-003-1367-y.

    Article  PubMed  Google Scholar 

  50. Rose PG, Faulhaber P, Miraldi F, Abdul-Karim FW. Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol Oncol. 2001;82:17–21. doi:10.1006/gyno.2001.6246.

    Article  CAS  PubMed  Google Scholar 

  51. Antunovic L, Cimitan M, Borsatti E, Baresic T, Sorio R, Giorda G, et al. Revisiting the clinical value of 18F-FDG PET/CT in detection of recurrent epithelial ovarian carcinomas: correlation with histology, serum CA-125 assay, and conventional radiological modalities. Clin Nucl Med. 2012;37:e184–8. doi:10.1097/RLU.0b013e31825b2583.

    Article  PubMed  Google Scholar 

  52. Goonewardene TI, Hall MR, Rustin GJ. Management of asymptomatic patients on follow-up for ovarian cancer with rising CA-125 concentrations. Lancet Oncol. 2007;8:813–21. doi:10.1016/S1470-2045(07)70273-5.

    Article  PubMed  Google Scholar 

  53. Dragosavac S, Derchain S, Caserta NM. G DES. Staging recurrent ovarian cancer with (18)FDG PET/CT. Oncol Lett. 2013;5:593–7. doi:10.3892/ol.2012.1075.

    PubMed  Google Scholar 

  54. Karlan BY, Hawkins R, Hoh C, Lee M, Tse N, Cane P, et al. Whole-body positron emission tomography with 2-[18 F]-fluoro-2-deoxy-D-glucose can detect recurrent ovarian carcinoma. Gynecol Oncol. 1993;51:175–81.

    Article  CAS  PubMed  Google Scholar 

  55. Zimny M, Siggelkow W, Schröder W, Nowak B, Biemann S, Rath W, et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in the diagnosis of recurrent ovarian cancer. Gynecol Oncol. 2001;83:310–5.

    Article  CAS  PubMed  Google Scholar 

  56. Yuan C, Liu R, Wang P, Ng H, Yeh S. Whole-body PET with (fluorine-18)-2-deoxyglucose for detecting recurrent ovarian carcinoma. Initial report. J Reprod Med. 1999;44:775–8.

    CAS  PubMed  Google Scholar 

  57. Kubik-Huch R, Dörffler W, Von Schulthess G, Marincek B, Köchli O, Seifert B, et al. Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol. 2000;10:761–7.

    Article  CAS  PubMed  Google Scholar 

  58. Nanni C, Rubello D, Farsad M, De Iaco P, Sansovini M, Erba P, et al. (18)F-FDG PET/CT in the evaluation of recurrent ovarian cancer: a prospective study on forty-one patients. Eur J Surg Oncol: J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2005;31:792–7. doi:10.1016/j.ejso.2005.02.029.

    Article  CAS  Google Scholar 

  59. Chen YM, Chen T, Zee CS, Shi YP, Wan LR, Tong LJ. Is there an impact of 18F-FDG PET/CT on the surveillance and clinical management of recurrent ovarian cancer? Research based on a large sample in a single PET/CT center. Nucl Med Commun. 2014;35:347–52. doi:10.1097/MNM.0000000000000051.

    Article  PubMed  Google Scholar 

  60. Sari O, Kaya B, Kara PO, Gedik GK, Celik C, Ozbek O, et al. The role of FDG-PET/CT in ovarian cancer patients with high tumor markers or suspicious lesion on contrast-enhanced CT in evaluation of recurrence and/or in determination of intraabdominal metastases. Rev Esp Med Nucl Imagen Mol. 2012;31:3–8. doi:10.1016/j.remn.2011.03.008.

    CAS  PubMed  Google Scholar 

  61. Bristow RE, Giuntoli 2nd RL, Pannu HK, Schulick RD, Fishman EK, Wahl RL. Combined PET/CT for detecting recurrent ovarian cancer limited to retroperitoneal lymph nodes. Gynecol Oncol. 2005;99:294–300. doi:10.1016/j.ygyno.2005.06.019.

    Article  PubMed  Google Scholar 

  62. Limei Z, Yong C, Yan X, Shuai T, Jiangyan X, Zhiqing L. Accuracy of positron emission tomography/computed tomography in the diagnosis and restaging for recurrent ovarian cancer: a meta-analysis. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2013;23:598–607. doi:10.1097/IGC.0b013e31828a183c.

    Article  Google Scholar 

  63. Hebel CB, Behrendt FF, Heinzel A, Krohn T, Mottaghy FM, Bauerschlag DO, et al. Negative 18F-2-fluorodeoxyglucose PET/CT predicts good cancer specific survival in patients with a suspicion of recurrent ovarian cancer. Eur J Radiol. 2014;83:463–7. doi:10.1016/j.ejrad.2013.12.006.

    Article  PubMed  Google Scholar 

  64. Takeuchi S, Lucchini M, Schmeler KM, Coleman RL, Gershenson DM, Munsell MF, et al. Utility of 18F-FDG PET/CT in follow-up of patients with low-grade serous carcinoma of the ovary. Gynecol Oncol. 2014;133:100–4. doi:10.1016/j.ygyno.2014.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pan HS, Lee SL, Huang LW, Chen YK. Combined positron emission tomography-computed tomography and tumor markers for detecting recurrent ovarian cancer. Arch Gynecol Obstet. 2011;283:335–41. doi:10.1007/s00404-010-1404-6.

    Article  CAS  PubMed  Google Scholar 

  66. Bhosale P, Peungjesada S, Wei W, Levenback CF, Schmeler K, Rohren E, et al. Clinical utility of positron emission tomography/computed tomography in the evaluation of suspected recurrent ovarian cancer in the setting of normal CA-125 levels. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2010;20:936–44. doi:10.1111/IGC.0b013e3181e82a7f.

    Article  Google Scholar 

  67. Risum S, Hogdall C, Markova E, Berthelsen AK, Loft A, Jensen F, et al. Influence of 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography on recurrent ovarian cancer diagnosis and on selection of patients for secondary cytoreductive surgery. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2009;19:600–4. doi:10.1111/IGC.0b013e3181a3cc94.

    Article  Google Scholar 

  68. Sala E, Kataoka M, Pandit-Taskar N, Ishill N, Mironov S, Moskowitz CS, et al. Recurrent ovarian cancer: use of contrast-enhanced CT and PET/CT to accurately localize tumor recurrence and to predict patients’ survival. Radiology. 2010;257:125–34. doi:10.1148/radiol.10092279.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sanli Y, Turkmen C, Bakir B, Iyibozkurt C, Ozel S, Has D, et al. Diagnostic value of PET/CT is similar to that of conventional MRI and even better for detecting small peritoneal implants in patients with recurrent ovarian cancer. Nucl Med Commun. 2012;33:509–15. doi:10.1097/MNM.0b013e32834fc5bf.

    Article  PubMed  Google Scholar 

  70. Gu P, Pan LL, Wu SQ, Sun L, Huang G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2009;71:164–74. doi:10.1016/j.ejrad.2008.02.019.

    Article  PubMed  Google Scholar 

  71. Fulham MJ, Carter J, Baldey A, Hicks RJ, Ramshaw JE, Gibson M. The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol Oncol. 2009;112:462–8. doi:10.1016/j.ygyno.2008.08.027.

    Article  CAS  PubMed  Google Scholar 

  72. Kitajima K, Ueno Y, Suzuki K, Kita M, Ebina Y, Yamada H, et al. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT scans for diagnosing ovarian cancer recurrence. Eur J Radiol. 2012;81:3557–62. doi:10.1016/j.ejrad.2012.03.020.

    Article  PubMed  Google Scholar 

  73. Menzel C, Dobert N, Hamscho N, Zaplatnikov K, Vasvatekis S, Matic V, et al. The influence of CA 125 and CEA levels on the results of (18)F-deoxyglucose positron emission tomography in suspected recurrence of epithelial ovarian cancer. Strahlenther Onkol: Organ Dtsch Rontgengesellschaft [et al]. 2004;180:497–501. doi:10.1007/s00066-004-1208-3.

    Article  Google Scholar 

  74. Murakami M, Miyamoto T, Iida T, Tsukada H, Watanabe M, Shida M, et al. Whole-body positron emission tomography and tumor marker CA125 for detection of recurrence in epithelial ovarian cancer. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2006;16 Suppl 1:99–107. doi:10.1111/j.1525-1438.2006.00471.x.

    Article  Google Scholar 

  75. Thrall MM, DeLoia JA, Gallion H, Avril N. Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol Oncol. 2007;105:17–22. doi:10.1016/j.ygyno.2006.10.060.

    Article  PubMed  Google Scholar 

  76. Bristow RE, del Carmen MG, Pannu HK, Cohade C, Zahurak ML, Fishman EK, et al. Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery using combined PET/CT. Gynecol Oncol. 2003;90:519–28.

    Article  PubMed  Google Scholar 

  77. Ebina Y, Watari H, Kaneuchi M, Takeda M, Hosaka M, Kudo M, et al. Impact of FDG PET in optimizing patient selection for cytoreductive surgery in recurrent ovarian cancer. Eur J Nucl Med Mol Imaging. 2014;41:446–51. doi:10.1007/s00259-013-2610-9.

    Article  CAS  PubMed  Google Scholar 

  78. Du XL, Jiang T, Sheng XG, Li QS, Wang C, Yu H. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer. Eur J Radiol. 2012;81:3551–6. doi:10.1016/j.ejrad.2012.03.016.

    Article  PubMed  Google Scholar 

  79. Mansueto M, Grimaldi A, Mangili G, Picchio M, Giovacchini G, Vigano R, et al. Positron emission tomography/computed tomography introduction in the clinical management of patients with suspected recurrence of ovarian cancer: a cost-effectiveness analysis. Eur J Cancer Care. 2009;18:612–9. doi:10.1111/j.1365-2354.2008.00945.x.

    Article  CAS  Google Scholar 

  80. Musto A, Grassetto G, Marzola MC, Rampin L, Chondrogiannis S, Maffione AM, et al. Management of epithelial ovarian cancer from diagnosis to restaging: an overview of the role of imaging techniques with particular regard to the contribution of 18F-FDG PET/CT. Nucl Med Commun. 2014;35:588–97. doi:10.1097/MNM.0000000000000091.

    Article  CAS  PubMed  Google Scholar 

  81. Vergote I, Amant F, Kristensen G, Ehlen T, Reed NS, Casado A. Primary surgery or neoadjuvant chemotherapy followed by interval debulking surgery in advanced ovarian cancer. Eur J Cancer. 2011;47 Suppl 3:S88–92. doi:10.1016/S0959-8049(11)70152-6.

    Article  PubMed  Google Scholar 

  82. Risum S, Loft A, Engelholm SA, Hogdall E, Berthelsen AK, Nedergaard L, et al. Positron emission tomography/computed tomography predictors of overall survival in stage IIIC/IV ovarian cancer. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2012;22:1163–9. doi:10.1097/IGC.0b013e3182606ecb.

    Article  Google Scholar 

  83. Chung HH, Kwon HW, Kang KW, Park NH, Song YS, Chung JK, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis in patients with epithelial ovarian cancer. Ann Surg Oncol. 2012;19:1966–72. doi:10.1245/s10434-011-2153-x.

    Article  PubMed  Google Scholar 

  84. Liao S, Lan X, Cao G, Yuan H, Zhang Y. Prognostic predictive value of total lesion glycolysis from 18F-FDG PET/CT in post-surgical patients with epithelial ovarian cancer. Clin Nucl Med. 2013;38:715–20. doi:10.1097/RLU.0b013e31829f57fa.

    Article  PubMed  Google Scholar 

  85. Boers-Sonderen MJ, de Geus-Oei LF, Desar IM, van der Graaf WT, Oyen WJ, Ottevanger PB, et al. Temsirolimus and pegylated liposomal doxorubicin (PLD) combination therapy in breast, endometrial, and ovarian cancer: phase Ib results and prediction of clinical outcome with FDG-PET/CT. Target Oncol. 2014. doi:10.1007/s11523-014-0309-x.

    Google Scholar 

  86. Kurosaki H, Oriuchi N, Okazaki A, Tamaki T, Uki A, Izuta M, et al. Prognostic value of FDG-PET in patients with ovarian carcinoma following surgical treatment. Ann Nucl Med. 2006;20:171–4.

    Article  PubMed  Google Scholar 

  87. Risum S, Loft A, Hogdall C, Berthelsen AK, Hogdall E, Lundvall L, et al. Standardized FDG uptake as a prognostic variable and as a predictor of incomplete cytoreduction in primary advanced ovarian cancer. Acta Oncol. 2011;50:415–9. doi:10.3109/0284186X.2010.500296.

    Article  PubMed  Google Scholar 

  88. Trencsényi G, Márián T, Lajtos I, Krasznai Z, Balkay L, Emri M, et al. 18FDG,[18F] FLT,[18F] FAZA, and 11C-methionine are suitable tracers for the diagnosis and in vivo follow-up of the efficacy of chemotherapy by miniPET in both multidrug resistant and sensitive human gynecologic tumor xenografts. Biomed Res Int. 2014;2014.

  89. Jensen MM, Erichsen KD, Johnbeck CB, Bjorkling F, Madsen J, Jensen PB, et al. [18F]FDG and [18F]FLT positron emission tomography imaging following treatment with belinostat in human ovary cancer xenografts in mice. BMC Cancer. 2013;13:168. doi:10.1186/1471-2407-13-168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leyton J, Smith G, Lees M, Perumal M, Nguyen QD, Aigbirhio FI, et al. Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901. Mol Cancer Ther. 2008;7:3112–21. doi:10.1158/1535-7163.MCT-08-0264.

    Article  CAS  PubMed  Google Scholar 

  91. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med: Off Publ Soc Nucl Med. 2003;44:1426–31.

    CAS  Google Scholar 

  92. Munk Jensen M, Erichsen KD, Bjorkling F, Madsen J, Jensen PB, Sehested M, et al. Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One. 2013;8, e85126. doi:10.1371/journal.pone.0085126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Perumal M, Stronach EA, Gabra H, Aboagye EO. Evaluation of 2-deoxy-2-[18F]fluoro-D-glucose- and 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography as biomarkers of therapy response in platinum-resistant ovarian cancer. Mol Imaging Biol: MIB : Off Publ Acad Mol Imaging. 2012;14:753–61. doi:10.1007/s11307-012-0554-2.

    Article  Google Scholar 

  94. Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, et al. 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med: Off Publ Soc Nucl Med. 2010;51:1559–64. doi:10.2967/jnumed.109.073288.

    Article  Google Scholar 

  95. Niu G, Li Z, Cao Q, Chen X. Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur J Nucl Med Mol Imaging. 2009;36:1510–9. doi:10.1007/s00259-009-1158-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Heskamp S, Laverman P, Rosik D, Boschetti F, van der Graaf WT, Oyen WJ, et al. Imaging of human epidermal growth factor receptor type 2 expression with 18F-labeled affibody molecule ZHER2:2395 in a mouse model for ovarian cancer. J Nucl Med: Off Publ Soc Nucl Med. 2012;53:146–53. doi:10.2967/jnumed.111.093047.

    Article  CAS  Google Scholar 

  97. van der Bilt AR, van Scheltinga AG T, Timmer-Bosscha H, Schroder CP, Pot L, Kosterink JG, et al. Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:6306–14. doi:10.1158/1078-0432.CCR-12-0406.

    Article  CAS  Google Scholar 

  98. Partovi S, Kohan A, Rubbert C, Vercher-Conejero JL, Gaeta C, Yuh R, et al. Clinical oncologic applications of PET/MRI: a new horizon. Am J Nucl Med Mol Imaging. 2014;4:202–12.

    PubMed  PubMed Central  Google Scholar 

  99. Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol. 2013;43:860–75. doi:10.1007/s00247-012-2570-4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nakajo K, Tatsumi M, Inoue A, Isohashi K, Higuchi I, Kato H, et al. Diagnostic performance of fluorodeoxyglucose positron emission tomography/magnetic resonance imaging fusion images of gynecological malignant tumors: comparison with positron emission tomography/computed tomography. Jpn J Radiol. 2010;28:95–100. doi:10.1007/s11604-009-0387-3.

    Article  PubMed  Google Scholar 

  101. Beiderwellen K, Grueneisen J, Ruhlmann V, Buderath P, Aktas B, Heusch P, et al. [18F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging. 2015;42:56–65. doi:10.1007/s00259-014-2902-8.

    Article  CAS  PubMed  Google Scholar 

  102. Queiroz MA, Kubik-Huch RA, Hauser N, Freiwald-Chilla B, von Schulthess G, Froehlich JM, et al. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol. 2015;25:2222–30. doi:10.1007/s00330-015-3657-8.

    Article  PubMed  Google Scholar 

  103. Grueneisen J, Schaarschmidt BM, Heubner M, Suntharalingam S, Milk I, Kinner S, et al. Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: a comparison to PET/CT. Eur J Radiol. 2015;84:2097–102. doi:10.1016/j.ejrad.2015.08.010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiewvan, B., Torigian, D.A., Emamzadehfard, S. et al. An update on the role of PET/CT and PET/MRI in ovarian cancer. Eur J Nucl Med Mol Imaging 44, 1079–1091 (2017). https://doi.org/10.1007/s00259-017-3638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3638-z

Keywords

Navigation