Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT

  • Johannes Schwenck
  • Hansjoerg Rempp
  • Gerald Reischl
  • Stephan Kruck
  • Arnulf Stenzl
  • Konstantin Nikolaou
  • Christina Pfannenberg
  • Christian la FougèreEmail author
Original Article



Prostate-specific membrane antigen (PSMA) is expressed ubiquitously on the membrane of most prostate tumors and its metastasis. While PET/CT using 11C-choline was considered as the gold standard in the staging of prostate cancer, PET with radiolabelled PSMA ligands was introduced into the clinic in recent years. Our aim was to compare the PSMA ligand 68Ga-PSMA-11 with 11C-choline in patients with primary and recurrent prostate cancer.


123 patients underwent a whole-body PET/CT examination using 68Ga-PSMA-11 and 11C-choline. Suspicious lesions were evaluated visually and semiquantitatively (SUVavg). Out of these, 103 suffered from a confirmed biochemical relapse after prostatectomy and/or radiotherapy (mean PSA level of 4.5 ng/ml), while 20 patients underwent primary staging.


In 67 patients with biochemical relapse, we detected 458 lymph nodes suspicious for metastasis. PET using 68Ga-PSMA-11 showed a significantly higher uptake and detection rate than 11C-choline PET. Also 68Ga-PSMA-11 PET identified significantly more patients with suspicious lymph nodes as well as affected lymph nodes regions especially at low PSA levels. Bone lesions suspicious for prostate cancer metastasis were revealed in 36 patients’ biochemical relapse. Significantly more bone lesions were detected by 68Ga-PSMA-11, but only 3 patients had only PSMA-positive bone lesions. Nevertheless, we detected also 29 suspicious lymph nodes and 8 bone lesions, which were only positive as per 11C-choline PET. These findings led to crucial differences in the TNM classification and the identification of oligometastatic patients. In the patients who underwent initial staging, all primary tumors showed uptake of both tracers. Although significantly more suspicious lymph nodes and bone lesions were identified, only 2 patients presented with bone lesions only detected by 68Ga-PSMA-11 PET.


Thus, PET using 68Ga-PSMA-11 showed a higher detection rate than 11C-choline PET for lymph nodes as well as bone lesions. However, we found lymph nodes and bone lesions which were not concordant applying both tracers.


Prostate cancer PET/CT PSMA Choline 


Compliance with ethical standards

Ethical approval

All patients gave written informed consent for the purpose of anonymized evaluation and publication of their data. All reported investigations were conducted in accordance with the Helsinki Declaration and with national regulations. The data analysis was approved by the ethics committee of the University of Tübingen (416/2015R).

Competing interests

Nothing to declare.


No funding.

Authors’ contributions

Conception and design: JS, ClF, HR; Analysis and interpretation of data: JS, HR CP, ClF; Drafting manuscript and critical revision JS, ClF, HR, CP, SK, AS, GR and KN. All authors read and approved the final manuscript.

Supplementary material

259_2016_3490_MOESM1_ESM.doc (3.3 mb)
ESM 1 (DOC 3350 kb)


  1. 1.
    Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. doi: 10.1007/s00259-012-2298-2.CrossRefPubMedGoogle Scholar
  2. 2.
    Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92. doi: 10.1007/s00259-014-2713-y.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20. doi: 10.1007/s00259-013-2525-5.CrossRefPubMedGoogle Scholar
  4. 4.
    Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209. doi: 10.1007/s00259-014-2949-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of Hybrid (6)(8)Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med. 2015;56:668–74. doi: 10.2967/jnumed.115.154153.CrossRefPubMedGoogle Scholar
  6. 6.
    Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma - A study of 184 cases. Cancer. 1998;82:2256–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Yao V, Berkman CE, Choi JK, O’Keefe DS, Bacich DJ. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the Non-Polyglutamated folate. Folic Acid Prostate. 2010;70:305–16. doi: 10.1002/Pros.21065.PubMedGoogle Scholar
  8. 8.
    Yao V, Bacich DJ. Prostate specific membrane antigen (PSMA) expression gives prostate cancer cells a growth advantage in a physiologically relevant folate environment in vitro. Prostate. 2006;66:867–75. doi: 10.1002/Pros.20361.CrossRefPubMedGoogle Scholar
  9. 9.
    Minner S, Wittmer C, Graefen M, Salomon G, Steuber T, Haese A, et al. High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate. 2011;71:281–8. doi: 10.1002/pros.21241.CrossRefPubMedGoogle Scholar
  10. 10.
    Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients Who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56:1185–90. doi: 10.2967/jnumed.115.160382.CrossRefPubMedGoogle Scholar
  11. 11.
    Ost P, Jereczek-Fossa BA, As NV, Zilli T, Muacevic A, Olivier K, et al. Progression-free survival following stereotactic body radiotherapy for oligometastatic prostate cancer treatment-naive recurrence: a multi-institutional analysis. Eur Urol. 2015. doi: 10.1016/j.eururo.2015.07.004.Google Scholar
  12. 12.
    Reischl G, Bieg C, Schmiedl O, Solbach C, Machulla HJ. Highly efficient automated synthesis of [(11)C]choline for multi dose utilization. Appl Radiat Isot. 2004;60:835–8. doi: 10.1016/j.apradiso.2004.01.006.CrossRefPubMedGoogle Scholar
  13. 13.
    Eder M, Schafer M, Bauder-Wust U, Hull WE, Wangler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23:688–97. doi: 10.1021/bc200279b.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8. doi: 10.2967/jnumed.107.040378.CrossRefPubMedGoogle Scholar
  15. 15.
    Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89. doi: 10.1088/0031-9155/56/8/004.CrossRefPubMedGoogle Scholar
  16. 16.
    Brendle C, Kupferschlager J, Nikolaou K, la Fougere C, Gatidis S, Pfannenberg C. Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? - Variability induced by different SUV measurements and varying reconstruction methods. Eur J Radiol. 2015;84:158–62. doi: 10.1016/j.ejrad.2014.10.018.CrossRefPubMedGoogle Scholar
  17. 17.
    Prieto E, Dominguez-Prado I, Garcia-Velloso MJ, Penuelas I, Richter JA, Marti-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. 2013;38:103–9. doi: 10.1097/RLU.0b013e318279b9df.CrossRefPubMedGoogle Scholar
  18. 18.
    Krohn T, Verburg FA, Pufe T, Neuhuber W, Vogg A, Heinzel A, et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42:210–4. doi: 10.1007/s00259-014-2915-3.CrossRefPubMedGoogle Scholar
  19. 19.
    Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13:8–10.PubMedGoogle Scholar
  20. 20.
    Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol. 2011;8:378–82. doi: 10.1038/nrclinonc.2011.44.PubMedGoogle Scholar
  21. 21.
    Schwarzenbock S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics. 2012;2:318–30. doi: 10.7150/thno.4008.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63:1040–8. doi: 10.1016/j.eururo.2012.09.039.CrossRefPubMedGoogle Scholar
  23. 23.
    Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 2013;64:106–17. doi: 10.1016/j.eururo.2013.04.019.CrossRefPubMedGoogle Scholar
  24. 24.
    Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33:1387–98. doi: 10.1007/s00259-006-0150-2.CrossRefPubMedGoogle Scholar
  25. 25.
    Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35:9–17. doi: 10.1007/s00259-007-0530-2.CrossRefPubMedGoogle Scholar
  26. 26.
    Kabasakal L, Demirci E, Ocak M, Akyel R, Nematyazar J, Aygun A, et al. Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl Med Commun. 2015;36:582–7. doi: 10.1097/MNM.0000000000000290.CrossRefPubMedGoogle Scholar
  27. 27.
    Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23. doi: 10.1007/s00259-007-0581-4.CrossRefPubMedGoogle Scholar
  28. 28.
    Castellucci P, Fuccio C, Rubello D, Schiavina R, Santi I, Nanni C, et al. Is there a role for C-11-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase < 1.5 ng/ml? Eur J Nucl Med Mol Imaging. 2011;38:55–63. doi: 10.1007/s00259-010-1604-0.CrossRefPubMedGoogle Scholar
  29. 29.
    Hijazi S, Meller B, Leitsmann C, Strauss A, Meller J, Ritter CO, et al. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by (68) Ga-PSMA-positron emission tomography/computerized tomography. Prostate. 2015;75:1934–40. doi: 10.1002/pros.23091.CrossRefPubMedGoogle Scholar
  30. 30.
    Herlemann A, Wenter V, Kretschmer A, Thierfelder K, Bartenstein P, Faber C, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. 2016.Google Scholar
  31. 31.
    Takeda A, Sanuki N, Kunieda E. Role of stereotactic body radiotherapy for oligometastasis from colorectal cancer. World J Gastroenterol. 2014;20:4220–9. doi: 10.3748/wjg.v20.i15.4220.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shimada Y, Saji H, Kakihana M, Kajiwara N, Ohira T, Ikeda N. Survival outcomes for oligometastasis in resected non-small cell lung cancer. Asian Cardiovasc Thorac Ann. 2015;23:937–44. doi: 10.1177/0218492315596463.CrossRefPubMedGoogle Scholar
  33. 33.
    Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.PubMedGoogle Scholar
  34. 34.
    Hartenbach M, Hartenbach S, Bechtloff W, Danz B, Kraft K, Klemenz B, et al. Combined PET/MRI improves diagnostic accuracy in patients with prostate cancer: a prospective diagnostic trial. Clin Cancer Res. 2014;20:3244–53. doi: 10.1158/1078-0432.CCR-13-2653.CrossRefPubMedGoogle Scholar
  35. 35.
    Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016. doi: 10.1016/j.eururo.2015.12.053.Google Scholar
  36. 36.
    Abdollah F, Gandaglia G, Suardi N, Capitanio U, Salonia A, Nini A, et al. More extensive pelvic lymph node dissection improves survival in patients with node-positive prostate cancer. Eur Urol. 2015;67:212–9. doi: 10.1016/j.eururo.2014.05.011.CrossRefPubMedGoogle Scholar
  37. 37.
    Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. 68Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. 2016. doi: 10.1016/j.eururo.2015.12.051.PubMedGoogle Scholar
  38. 38.
    Schwenck J, Tabatabai G, Skardelly M, Reischl G, Beschorner R, Pichler B, et al. In vivo visualization of prostate-specific membrane antigen in glioblastoma. Eur J Nucl Med Mol Imaging. 2015;42:170–1. doi: 10.1007/s00259-014-2921-5.CrossRefPubMedGoogle Scholar
  39. 39.
    Demirci E, Ocak M, Kabasakal L, Decristoforo C, Talat Z, Halac M, et al. (68)Ga-PSMA PET/CT imaging of metastatic clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2014;41:1461–2. doi: 10.1007/s00259-014-2766-y.CrossRefPubMedGoogle Scholar
  40. 40.
    van Waarde A, Jager PL, Ishiwata K, Dierckx RA, Elsinga PH. Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation. J Nucl Med. 2006;47:150–4.PubMedGoogle Scholar
  41. 41.
    Kobe C, Maintz D, Fischer T, Drzezga A, Chang DH. Prostate-specific membrane antigen PET/CT in splenic sarcoidosis. Clin Nucl Med. 2015;40:897–8. doi: 10.1097/RLU.0000000000000827.CrossRefPubMedGoogle Scholar
  42. 42.
    Hara T, Bansal A, DeGrado TR. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol. 2006;33:977–84. doi: 10.1016/j.nucmedbio.2006.08.002.CrossRefPubMedGoogle Scholar
  43. 43.
    Mannweiler S, Amersdorfer P, Trajanoski S, Terrett JA, King D, Mehes G. Heterogeneity of prostate-specific membrane antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol Oncol Res. 2009;15:167–72. doi: 10.1007/s12253-008-9104-2.CrossRefPubMedGoogle Scholar
  44. 44.
    Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Johannes Schwenck
    • 1
    • 3
  • Hansjoerg Rempp
    • 2
  • Gerald Reischl
    • 3
  • Stephan Kruck
    • 4
  • Arnulf Stenzl
    • 4
  • Konstantin Nikolaou
    • 2
  • Christina Pfannenberg
    • 2
  • Christian la Fougère
    • 1
    • 5
    Email author
  1. 1.Department of Nuclear Medicine and Clinical Molecular ImagingEberhard Karls UniversityTübingenGermany
  2. 2.Department of Diagnostic and Interventional RadiologyEberhard Karls UniversityTübingenGermany
  3. 3.Department of Preclinical Imaging and RadiopharmacyEberhard Karls UniversityTübingenGermany
  4. 4.Department of UrologyEberhard Karls UniversityTübingenGermany
  5. 5.German Cancer Consortium, German Cancer Research Center Partner SiteHeidelbergGermany

Personalised recommendations