Skip to main content

Advertisement

Log in

18F-Fluorocholine PET/CT as a complementary tool in the follow-up of low-grade glioma: diagnostic accuracy and clinical utility

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The follow-up of treated low-grade glioma (LGG) requires the evaluation of subtle clinical changes and MRI results. When the result is inconclusive, additional procedures are required to assist decision-making, such as the use of advanced MRI (aMRI) sequences and nuclear medicine scans (SPECT and PET). The aim of this study was to determine whether incorporating 18F-fluorocholine PET/CT in the follow-up protocol for treated LGG improves diagnostic accuracy and clinical utility.

Methods

This was a prospective case-series study in patients with treated LGG during standard follow-up with indeterminate clinical and/or radiological findings of tumour activity. All patients underwent clinical evaluation, aMRI, 201Tl-SPECT and 18F-fluorocholine PET/CT. Images were interpreted by visual evaluation complemented with semiquantitative analysis.

Results

Between January 2012 and December 2013, 18 patients were included in this study. The final diagnosis was established by histology (five surgical specimens, one biopsy specimen) or by consensus of the Neuro-Oncology Group (11 patients) after a follow-up of >6 months (mean 14.9 ± 2.72 months). The global diagnostic accuracies were 90.9 % for aMRI (38.8 % inconclusive), 69.2 % for 201Tl-SPECT (11.1 % inconclusive), and 100 % for 18F-fluorocholine PET/CT. 201Tl-SPECT led correctly to a change in the initial approach in 38.9 % of patients but might have led to error in 27.8 %. The use of 18F-fluorocholine PET/CT alone rather than 201Tl-SPECT led correctly to a change in the approach suggested by routine follow-up in 72.2 % of patients and endorsed the approach in the remaining 27.8 %.

Conclusion

Our results support the need to complement structural MRI with aMRI and nuclear medicine procedures in selected patients. 18F-Fluorocholine PET/CT can be useful in the individualized management of patients with treated LGG with uncertain clinical and/or radiological evidence of tumour activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gómez-Río M, Martínez Del Valle Torres D, Rodríguez-Fernández A, Llamas-Elvira JM, Ortega Lozano S, Ramos Font C, et al. (201)Tl-SPECT in low-grade gliomas: diagnostic accuracy in differential diagnosis between tumour recurrence and radionecrosis. Eur J Nucl Med Mol Imaging. 2004;31:1237–43.

    Article  PubMed  Google Scholar 

  3. Galldiks N, Stoffels G, Ruge MI, Rapp M, Sabel M, Reifenberger G, et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54:2046–54.

    Article  CAS  PubMed  Google Scholar 

  4. Rahmathulla G, Marko NF, Weil RJ. Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations. J Clin Neurosci. 2013;20:485–502.

    Article  PubMed  Google Scholar 

  5. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van der Bent M. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010;9:906–20.

    Article  PubMed  Google Scholar 

  6. Arbizu J, Domínguez PD, Diez-Valle R, Vigil C, García-Eulate R, Zubieta JL, et al. Neuroimaging in brain tumors. Rev Esp Med Nucl. 2011;30:47–65.

    Article  CAS  PubMed  Google Scholar 

  7. Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol. 2007;6:711–24.

    Article  CAS  PubMed  Google Scholar 

  8. DeGrado TR, Baldwin SW, Wang S, Orr MD, Liao RP, Friedman HS, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.

    CAS  PubMed  Google Scholar 

  9. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, et al. Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res. 1999;90:419–24.

    Article  CAS  PubMed  Google Scholar 

  10. Ramírez de Molina A, Rodríguez-González A, Gutiérrez R, Martínez-Piñeiro L, Sánchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296:580–3.

    Article  PubMed  Google Scholar 

  11. Swinnen JV, Brusselmans K, Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care. 2006;9:358–65.

    Article  CAS  PubMed  Google Scholar 

  12. Kwee SA, DeGrado TR, Talbot JN, Gutman F, Coel MN. Cancer imaging with fluorine-18-labeled choline derivatives. Semin Nucl Med. 2007;37:420–8.

    Article  PubMed  Google Scholar 

  13. Hara T, Kondo T, Hara T, Kosaka N. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg. 2003;99:474–9.

    Article  PubMed  Google Scholar 

  14. Kwee SA, Coel MN, Lim J, Ko JP. Combined use of F-18 fluorocholine positron emission tomography and magnetic resonance spectroscopy for brain tumor evaluation. J Neuroimaging. 2004;14:285–9.

    Article  PubMed  Google Scholar 

  15. Lam WW, Ng DC-E, Wong WY, Ong SC, Yu SW, See SJ. Promising role of [18F]fluorocholine PET/CT vs [18F]fluorodeoxyglucose PET/CT in primary brain tumors – early experience. Clin Neurol Neurosurg. 2011;113:156–61.

    Article  PubMed  Google Scholar 

  16. Kwee SA, Ko JP, Jiang CS, Watters MR, Coel MN. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology. 2007;244:557–65.

    Article  PubMed  Google Scholar 

  17. Mertens K, Ham H, Deblaere K, Kalala JP, Van den Broecke C, Slaets D, et al. Distribution patterns of 18F-labelled fluoromethylcholine in normal structures and tumors of the head: a PET/MRI evaluation. Clin Nucl Med. 2012;37:e196–203.

    Article  PubMed  Google Scholar 

  18. Mertens K, Bolcaen J, Ham H, Deblaere K, Van den Broecke C, Boterberg T, et al. The optimal timing for imaging brain tumours and other brain lesions with 18F-labelled fluoromethylcholine: a dynamic positron emission tomography study. Nucl Med Commun. 2012;33:954–9.

    Article  CAS  PubMed  Google Scholar 

  19. Roelcke U, Bruehlmeier M, Hefti M, Hundsberger T, Nitzsche EU. F-18 choline PET does not detect increased metabolism in F-18 fluoroethyltyrosine-negative low-grade gliomas. Clin Nucl Med. 2012;37:e1–3.

    Article  PubMed  Google Scholar 

  20. Nabors LB, Ammirati M, Bierman PJ, Brem H, Butowski N, Chamberlain MC, et al. Central nervous system cancers. J Natl Compr Cancer Netw. 2013;11:1114–51.

    CAS  Google Scholar 

  21. Essig M, Anzalone N, Combs SE, Dörfler À, Lee SK, Picozzi P, et al. MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice. AJNR Am J Neuroradiol. 2012;33:803–17.

    Article  CAS  PubMed  Google Scholar 

  22. Van den Bent M, Wefel J, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12:583–93.

    Article  PubMed  Google Scholar 

  23. Gómez-Río M, Rodríguez-Fernández A, Ramos-Font C, López-Ramírez E, Llamas-Elvira JM. Diagnostic accuracy of 201-Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging. 2008;35:966–75.

    Article  PubMed  Google Scholar 

  24. Ortega-Lozano SJ, Del Valle-Torres DM, Gómez-Río M, Llamas-Elvira JM. Thallium-201 SPECT in brain gliomas: quantitative assessment in differential diagnosis between tumor recurrence and radionecrosis. Clin Nucl Med. 2009;34:503–5.

    Article  PubMed  Google Scholar 

  25. Walter F, Cloughesy T, Walter MA, Lai A, Nghiemphu P, Wagle N, et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J Nucl Med. 2012;53:393–8.

    Article  CAS  PubMed  Google Scholar 

  26. Spaeth N, Wyss MT, Pahnke J, Biollaz G, Lutz A, Goepfert K, et al. Uptake of 18F-fluorocholine, 18F-fluoro-ethyl-L-tyrosine and 18F-fluoro-2-deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging. 2006;33:673–82.

    Article  CAS  PubMed  Google Scholar 

  27. Wyss MT, Spaeth N, Biollaz G, Pahnke J, Alessi P, Trachsel E, et al. Uptake of 18F-fluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP (L19), a marker of angiogenesis. J Nucl Med. 2007;48:608–14.

    Article  CAS  PubMed  Google Scholar 

  28. Bisdas S, Ritz R, Bender B, Braun C, Pfannenberg C, Reimold M, et al. Metabolic mapping of gliomas using hybrid MR-PET imaging: feasibility of the method and spatial distribution of metabolic changes. Invest Radiol. 2013;48:295–301.

    Article  CAS  PubMed  Google Scholar 

  29. Rahm V, Boxheimer L, Bruehlmeier M, Berberat J, Nitzsche EU, Remonda L, et al. Focal changes in diffusivity on apparent diffusion coefficient MR imaging and amino acid uptake on PET do not colocalize in nonenhancing low-grade gliomas. J Nucl Med. 2014;55:546–50.

    Article  CAS  PubMed  Google Scholar 

  30. Filss CP, Galldiks N, Stoffels G, Sabel M, Wittsack HJ, Turowski B, et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med. 2014;55:540–5.

    Article  CAS  PubMed  Google Scholar 

  31. Vöglein J, Tüttenberg J, Weimer M, Gerigk L, Kauczor HU, Essig M, et al. Treatment monitoring in gliomas: comparison of dynamic susceptibility-weighted contrast-enhanced and spectroscopic MRI techniques for identifying treatment failure. Invest Radiol. 2011;46:390–400.

    Article  PubMed  Google Scholar 

  32. Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol. 2012;9:712–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors contribution

All authors made a substantial intellectual contribution, assume responsibility for publication of this article and are in a position to explain and defend why and how the observations were made, the theoretical framework, the data and results obtained, and to participate in critical discussions in related scientific meetings. All authors collected and analysed the data, reviewed the draft, provided comments and approved the final version of the report.

Conflicts of interest

None.

Funding

This project was supported by FIS-Instituto de Salud Carlos III (PI 09/90737), Consejería de Igualdad, Salud y Políticas Sociales de la Junta de Andalucía (PI: 06/0342), and Instituto de Investigación Biosanitaria de Granada, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gómez-Río.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Río, M., Testart Dardel, N., Santiago Chinchilla, A. et al. 18F-Fluorocholine PET/CT as a complementary tool in the follow-up of low-grade glioma: diagnostic accuracy and clinical utility. Eur J Nucl Med Mol Imaging 42, 886–895 (2015). https://doi.org/10.1007/s00259-015-2997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-2997-6

Keywords

Navigation