Skip to main content

Advertisement

Log in

[18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We aimed to characterize pharmacologically the TSPO- radioligand [18F]DPA-714 in the brain of healthy cynomolgus monkeys and evaluate the cellular origin of its binding in a model of neurodegeneration induced by intrastriatal injection of quinolinic acid (QA).

Methods

[18F]DPA-714 PET images were acquired before and at 2, 7, 14, 21, 49, 70, 91 days after putaminal lesioning. Blocking and displacement studies were carried out (PK11195). Different modelling approaches estimated rate constants and V T (total distribution volume) which was used to measure longitudinal changes in the lesioned putamen. Sections for immunohistochemical labelling were prepared at the same time-points to evaluate correlations between in vivo [18F]DPA-714 binding and microglial/astrocytic activation.

Results

[18F]DPA-714 showed a widespread distribution with a higher signal in the thalamus and occipital cortex and lower binding in the cerebellum. TSPO was expressed throughout the whole brain and about 73 % of [18F]DPA-714 binding was specific for TSPO in vivo. The one-tissue compartment model (1-TCM) provided good and reproducible estimates of V T and rate constants, and V T values from the 1-TCM and the Logan approach were highly correlated (r 2 = 0.85). QA lesioning induced an increase in V T, which was +17 %, +54 %, +157 % and +39 % higher than baseline on days 7, 14, 21 and 91 after QA injection, respectively. Immunohistochemistry revealed an early microglial and a delayed astrocytic activation after QA injection. [18F]DPA-714 binding matched TSPO immunopositive areas and showed a stronger colocalization with CD68 microglia than with GFAP-activated astrocytes.

Conclusion

[18F]DPA-714 binds to TSPO with high specificity in the primate brain under normal conditions and in the QA model. This tracer provides a sensitive tool for assessing neuroinflammation in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19:3053–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S210–2.

    Article  PubMed  Google Scholar 

  4. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12:1005–15.

    CAS  PubMed  Google Scholar 

  5. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapere JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 2006;27:402–9.

    Article  CAS  PubMed  Google Scholar 

  6. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118:1–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    Article  PubMed  Google Scholar 

  9. Dolle F, Luus C, Reynolds A, Kassiou M. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem. 2009;16:2899–923.

    Article  CAS  PubMed  Google Scholar 

  10. Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50:468–76.

    Article  CAS  PubMed  Google Scholar 

  11. Damont A, Hinnen F, Kuhnast B, Schöllhorn-Peyronneau M, James M, Luus C, et al. Radiosynthesis of [18F]DPA-714, a selective radioligand for imaging the translocator protein (18 kDa) with PET. J Labelled Comp Radiopharm. 2008;51:286–92.

    Article  CAS  Google Scholar 

  12. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008;49:814–22.

    Article  CAS  PubMed  Google Scholar 

  13. Martin A, Boisgard R, Theze B, Van Camp N, Kuhnast B, Damont A, et al. Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:230–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, Baulieu JL, et al. Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 2012;39:570–8.

    Article  CAS  PubMed  Google Scholar 

  15. Brouillet E, Conde F, Beal MF, Hantraye P. Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol. 1999;59:427–68.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF. Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol. 1993;119:46–71.

    Article  CAS  PubMed  Google Scholar 

  17. Kuhnast B, Damont A, Hinnen F, Catarina T, Demphel S, Le Helleix S, et al. [18F]DPA-714, [18F]PBR111 and [18F]FEDAA1106-selective radioligands for imaging TSPO 18 kDa with PET: automated radiosynthesis on a TRACERLAb FX-FN synthesizer and quality controls. Appl Radiat Isot. 2012;70:489–97.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang MR, Kumata K, Maeda J, Yanamoto K, Hatori A, Okada M, et al. 11C-AC-5216: a novel PET ligand for peripheral benzodiazepine receptors in the primate brain. J Nucl Med. 2007;48:1853–61.

    Article  CAS  PubMed  Google Scholar 

  19. Peyronneau MA, Saba W, Goutal S, Damont A, Dolle F, Kassiou M, et al. Metabolism and quantification of [(18)F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos. 2013;41:122–31.

    Article  CAS  PubMed  Google Scholar 

  20. Rivière D, Papadopoulos-Orfanos D, Régis J, Mangin JF. A structural browser of brain anatomy. Human Brain Mapping. San Antonio. Neuroimage; 2000.

  21. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  CAS  PubMed  Google Scholar 

  22. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.

    Article  CAS  PubMed  Google Scholar 

  23. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Contr. 1974;AC19:716–23.

    Article  Google Scholar 

  24. Carson RE. Parameter estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986. p. 347–9.

    Google Scholar 

  25. Dauguet J, Delzescaux T, Conde F, Mangin JF, Ayache N, Hantraye P, et al. Three-dimensional reconstruction of stained histological slices and 3D non-linear registration with in-vivo MRI for whole baboon brain. J Neurosci Methods. 2007;164:191–204.

    Article  PubMed  Google Scholar 

  26. Doorduin J, Klein HC, Dierckx RA, James M, Kassiou M, de Vries EF. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol Imaging Biol. 2009;11:386–98.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Martin A, Boisgard R, Kassiou M, Dolle F, Tavitian B. Reduced PBR/TSPO expression after minocycline treatment in a rat model of focal cerebral ischemia: a PET study using [(18)F]DPA-714. Mol Imaging Biol. 2011;13:10–5.

    Article  PubMed  Google Scholar 

  28. Lavisse S, Guillermier M, Herard AS, Petit F, Delahaye M, Van Camp N, et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci. 2012;32:10809–18.

    Article  CAS  PubMed  Google Scholar 

  29. Rao VL, Butterworth RF. Characterization of binding sites for the omega3 receptor ligands [3H]PK11195 and [3H]RO5-4864 in human brain. Eur J Pharmacol. 1997;340:89–99.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang MR, Maeda J, Ogawa M, Noguchi J, Ito T, Yoshida Y, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem. 2004;47:2228–35.

    Article  CAS  PubMed  Google Scholar 

  31. Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Fujimura Y, et al. Brain and whole-body imaging in nonhuman primates of [11C]PBR28, a promising PET radioligand for peripheral benzodiazepine receptors. Neuroimage. 2008;39:1289–98.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Imaizumi M, Briard E, Zoghbi SS, Gourley JP, Hong J, Musachio JL, et al. Kinetic evaluation in nonhuman primates of two new PET ligands for peripheral benzodiazepine receptors in brain. Synapse. 2007;61:595–605.

    Article  CAS  PubMed  Google Scholar 

  33. Saba W, Peyronneau MA, Goutal S, Damont A, Dollé F, Tournier N, et al. Inhalation of cigarette smoke decreases the binding of [18F]DPA-714 to 18 kDa translocator protein (TSPO) in several tissues: a PET study in baboons. In: Proceedings of the EANM'12 Annual Congress of the European Association of Nuclear Medicine, Milan, 2012

  34. Tsukada H, Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Comparing amyloid-beta deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys. Eur J Nucl Med Mol Imaging. 2014;41:2127–36.

    Article  CAS  PubMed  Google Scholar 

  35. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, et al. Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neurovirol. 2014;20:219–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, Kreisl WC, et al. Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med. 2011;52:24–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dihne M, Block F, Korr H, Topper R. Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res. 2001;902:178–89.

    Article  CAS  PubMed  Google Scholar 

  38. Moresco RM, Lavazza T, Belloli S, Lecchi M, Pezzola A, Todde S, et al. Quinolinic acid induced neurodegeneration in the striatum: a combined in vivo and in vitro analysis of receptor changes and microglia activation. Eur J Nucl Med Mol Imaging. 2008;35:704–15.

    Article  CAS  PubMed  Google Scholar 

  39. Brickell KL, Nicholson LF, Waldvogel HJ, Faull RL. Chemical and anatomical changes in the striatum and substantia nigra following quinolinic acid lesions in the striatum of the rat: a detailed time course of the cellular and GABA(A) receptor changes. J Chem Neuroanat. 1999;17:75–97.

    Article  CAS  PubMed  Google Scholar 

  40. Dusart I, Marty S, Peschanski M. Glial changes following an excitotoxic lesion in the CNS – II. Astrocytes. Neuroscience. 1991;45:541–9.

    Article  CAS  PubMed  Google Scholar 

  41. Marty S, Dusart I, Peschanski M. Glial changes following an excitotoxic lesion in the CNS – I. Microglia/macrophages. Neuroscience. 1991;45:529–39.

    Article  CAS  PubMed  Google Scholar 

  42. Ryu JK, Choi HB, McLarnon JG. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis. 2005;20:550–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to: Marion Chaigneau and Diane Houitte for expert technical assistance with animal handling, Yoan Fontyn and Léopold Eymin for reconstruction of PET data, and Stéphane Demphel, Stéphane Le Helleix and Tony Catarina for radioligand synthesis. We thank Albertine Dubois and Thierry Delzescaux for their respective assistance with various aspects of the VOI segmentation and 3D iconographic rendering. We also warmly thank Dr. Emmanuel Brouillet and Dr. Michel Bottlaender for stimulating discussions on the project and on the manuscript.

One author (K.I.) was supported in parts by the Canon Foundation Europe, and the Mochida Memorial Foundation for Medical and Pharmaceutical Research. This work was also partly supported by European Framework Programme 7 STEMS programme (LHSB-CT-2006-037328) and by the Agence Nationale de Recherche 2010-RFCS-003 (HD-SCT).

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lavisse.

Additional information

S. Lavisse and K. Inoue contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig 1

Microscopic examination of putamen sections immunostained for NeuN, TSPO, Iba1, CD68, GFAP and S100β in the intact (baseline) putamen and 1, 2, 7, 14, 21, 40, 49 and 91 days after QA injection (scale bar 50 μm)

High resolution image (TIFF 17104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavisse, S., Inoue, K., Jan, C. et al. [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging 42, 478–494 (2015). https://doi.org/10.1007/s00259-014-2962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2962-9

Keywords

Navigation