The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy

  • Lidia StrigariEmail author
  • Mark Konijnenberg
  • Carlo Chiesa
  • Manuel Bardies
  • Yong Du
  • Katarina Sjögreen Gleisner
  • Michael Lassmann
  • Glenn Flux
Review Article


Molecular radiotherapy (MRT) has demonstrated unique therapeutic advantages in the treatment of an increasing number of cancers. As with other treatment modalities, there is related toxicity to a number of organs at risk. Despite the large number of clinical trials over the past several decades, considerable uncertainties still remain regarding the optimization of this therapeutic approach and one of the vital issues to be answered is whether an absorbed radiation dose–response exists that could be used to guide personalized treatment. There are only limited and sporadic data investigating MRT dosimetry. The determination of dose–effect relationships for MRT has yet to be the explicit aim of a clinical trial. The aim of this article was to collate and discuss the available evidence for an absorbed radiation dose–effect relationships in MRT through a review of published data. Based on a PubMed search, 92 papers were found. Out of 79 studies investigating dosimetry, an absorbed dose–effect correlation was found in 48. The application of radiobiological modelling to clinical data is of increasing importance and the limited published data on absorbed dose–effect relationships based on these models are also reviewed. Based on National Cancer Institute guideline definition, the studies had a moderate or low rate of clinical relevance due to the limited number of studies investigating overall survival and absorbed dose. Nevertheless, the evidence strongly implies a correlation between the absorbed doses delivered and the response and toxicity, indicating that dosimetry-based personalized treatments would improve outcome and increase survival.


Molecular radiotherapy Dosimetry Dose–effect relationship 


Conflicts of interest


Supplementary material

259_2014_2824_MOESM1_ESM.doc (18 kb)
ESM 1 (DOCX 18.5 kb)


  1. 1.
    Dezarn WA, Cessna JT, DeWerd LA, Feng W, Gates VL, Halama J, et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys. 2011;38(8):4824–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Dale RG, Coles IP, Deehan C, O’Donoghue JA. Calculation of integrated biological response in brachytherapy. Int J Radiat Oncol Biol Phys. 1997;38(3):633–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Strigari L, Orlandini LC, Andriani I, D’Angelo A, Stefanacci M, Di Nallo AM, et al. A mathematical approach for evaluating the influence of dose heterogeneity on TCP for prostate cancer brachytherapy treatment. Phys Med Biol. 2008;53(18):5045–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Armpilia CI, Dale RG, Coles IP, Jones B, Antipas V. The determination of radiobiologically optimized half-lives for radionuclides used in permanent brachytherapy implants. Int J Radiat Oncol Biol Phys. 2003;55(2):378–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJ, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34(5):772–86.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34(10):1699–700.PubMedCrossRefGoogle Scholar
  7. 7.
    Savolainen S, Konijnenberg M, Bardiès M, Lassmann M, Strigari L, Chiesa C, et al. Radiation dosimetry is a necessary ingredient for a perfectly mixed molecular radiotherapy cocktail. Eur J Nucl Med Mol Imaging. 2012;39(3):548–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with 90Y microspheres: the experience of the national tumor institute of Milan. Q J Nucl Med Mol Imaging. 2011;55(2):168–97. Review.Google Scholar
  9. 9.
    Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med. 2006;47(9):1467–75.PubMedGoogle Scholar
  10. 10.
    Centre for Reviews and Dissemination. Undertaking systematic reviews of research on effectiveness. York, UK: Centre for Reviews and Dissemination, University of York; 2001.Google Scholar
  11. 11.
    National Cancer Institute. Levels of Evidence for Human Studies of Cancer Complementary and Alternative Medicine (PDQ®). Bethesda, MD: National Cancer Institute. Available from:
  12. 12.
    Klubo-Gwiedzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, et al. Efficacy of dosimetric versus empiric prescribed activity of 131-I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:3217–25.CrossRefGoogle Scholar
  13. 13.
    Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen IW, Sperling MI, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Flux GD, Haq M, Chittenden SJ, Buckley S, Hindorf C, Newbold K, et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(2):270–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Verburg FA, Stokkel MP, Düren C, Verkooijen RB, Mäder U, van Isselt JW, et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(2):276–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.PubMedGoogle Scholar
  17. 17.
    Hartung-Knemeyer V, Nagarajah J, Jentzen W, Ruhlmann M, Freudenberg LS, Stahl AR, et al. Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124I: predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Ann Nucl Med. 2012;26:723–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Bianchi L, Baroli A, Lomuscio G, Pedrazzini L, Pepe A, Pozzi L, et al. Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio hospital (Italy). Q J Nucl Med Mol Imaging. 2012;56(6):515–21.PubMedGoogle Scholar
  19. 19.
    Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Reduction in thyroid volume after radioiodine therapy of Graves' hyperthyroidism: results of a prospective, randomized, multicentre study. Eur J Clin Invest. 1996;26(1):59–63.PubMedCrossRefGoogle Scholar
  20. 20.
    Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Treatment of Graves' hyperthyroidism with radioiodine: results of a prospective randomized study. Thyroid. 1997;7(2):247–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Graf H, Fast S, Pacini F, Pinchera A, Leung A, Vaisman M, et al. Modified-release recombinant human TSH (MRrhTSH) augments the effect of 131I therapy in benign multinodular goiter: results from a multicenter international, randomized, placebo-controlled study. J Clin Endocrinol Metab. 2011;96(5):1368–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Fast S, Hegedüs L, Grupe P, Nielsen VE, Bluhme C, Bastholt L, et al. Recombinant human thyrotropin-stimulated radioiodine therapy of nodular goiter allows major reduction of the radiation burden with retained efficacy. J Clin Endocrinol Metab. 2010;95:3719–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Strigari L, Sciuto R, Benassi M, Bergomi S, Nocentini S, Maini CL. A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism. Med Phys. 2008;35(9):3903–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Traino AC, Di Martino F, Lazzeri M, Stabin MG. Influence of thyroid volume reduction on calculated dose in radioiodine therapy of Graves' hyperthyroidism. Phys Med Biol. 2000;45:121–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Di Martino F, Traino AC, Brill AB, Stabin MG, Lazzer M. A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves' disease. Phys Med Biol. 2002;47:1493–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Orsini F, Traino AC, Grosso M, Guidoccio F, Boni G, Volterrani D, et al. Personalization of radioiodine treatment for Graves' disease: a prospective, randomized study with a novel method for calculating the optimal 131I-iodide activity based on target reduction of thyroid mass. Q J Nucl Med Mol Imaging. 2012;56:496–502.PubMedGoogle Scholar
  27. 27.
    Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with 131I-MIBG. J Nucl Med. 2001;42(11):1713–21.PubMedGoogle Scholar
  28. 28.
    Buckley SE, Chittenden SJ, Saran FH, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50(9):1518–24.PubMedCrossRefGoogle Scholar
  29. 29.
    DuBois SG, Messina J, Maris JM, Huberty J, Glidden DV, Veatch J, et al. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 2004;22(12):2452–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Rhee TK, Lewandowski RJ, Liu DM, Mulcahy MF, Takahashi G, Hansen PD, et al. 90Y radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg. 2008;247(6):1029–35.PubMedCrossRefGoogle Scholar
  31. 31.
    Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(1):92S–8S.PubMedGoogle Scholar
  32. 32.
    Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38(7):1270–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med. 2005;46(1):99S–106S.PubMedGoogle Scholar
  34. 34.
    Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35(10):1847–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response – implications for radionuclide therapy. J Nucl Med. 2008;49(11):1884–99.PubMedCrossRefGoogle Scholar
  36. 36.
    Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging. 2011;38(12):2125–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352(5):441–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Wahl RL, Kroll S, Zasadny KR. Patient-specific whole-body dosimetry: principles and a simplified method for clinical implementation. J Nucl Med. 1998;39(8 Suppl):14S–20S.PubMedGoogle Scholar
  39. 39.
    Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, et al. 131I-tositumomab radioimmunotherapy: initial tumor dose–response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51(7):1155–62.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Koral KF, Francis IR, Kroll S, Zasadny KR, Kaminski MS, Wahl RL. Volume reduction versus radiation dose for tumors in previously untreated lymphoma patients who received iodine-131 tositumomab therapy. Conjugate views compared with a hybrid method. Cancer. 2002;94(4):1258–63.PubMedCrossRefGoogle Scholar
  41. 41.
    Roberson PL, Amro H, Wilderman SJ, Avram AM, Kaminski MS, Schipper MJ, et al. Bio-effect model applied to 131I radioimmunotherapy of refractory non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2011;38(5):874–83.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Press OW, Eary JF, Appelbaum FR, Martin PJ, Nelp WB, Glenn S, et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet. 1995;346:336–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson TA, Press OW. Therapy of B-cell lymphomas with monoclonal antibodies and radioimmunoconjugates: the Seattle experience. Ann Hematol. 2000;79:175–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Mones JV, Coleman M, Kostakoglu L, Furman RR, Chadburn A, Shore TB, et al. Dose-attenuated radioimmunotherapy with tositumomab and iodine 131 tositumomab in patients with recurrent non-Hodgkin’s lymphoma (NHL) and extensive bone marrow involvement. Leuk Lymphoma. 2007;48(2):342–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferrer L, Malek E, Bodet-Milin C, Legouill S, Prangère T, Robu D, et al. Comparisons of dosimetric approaches for fractionated radioimmunotherapy of non-Hodgkin’s Lymphoma. Q J Nucl Med Mol Imaging. 2012;56(6):529–37.PubMedGoogle Scholar
  46. 46.
    Ferrer L, Kraeber-Bodéré F, Bodet-Milin C, Rousseau C, Le Gouill S, Wegener WA, et al. Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer. 2010;116:1093–100.PubMedCrossRefGoogle Scholar
  47. 47.
    Ho S, Lau WY, Leung TW, Chan M, Johnson PJ, Li AK. Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer. Eur J Nucl Med. 1997;24:293–8.PubMedGoogle Scholar
  48. 48.
    Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med. 2012;53(2):255–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Bernal P, Raoul JL, Vidmar G, Sereegotov E, Sundram FX, Kumar A, et al. Intra-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma: results of an IAEA-sponsored multination study. Int J Radiat Oncol Biol Phys. 2007;69(5):1448–55.PubMedCrossRefGoogle Scholar
  50. 50.
    Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys. 2009;74(1):313–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol. 2008;53:6591–603.PubMedCrossRefGoogle Scholar
  52. 52.
    Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57(5):1826–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, et al. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med. 2010;51(9):1377–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Sangro B, Gil-Alzugaray B, Rodriguez J, Sola I, Martinez-Questa A, Viudez A, et al. Liver disease induced by radioembolization of liver tumours. Cancer. 2008;112(7):1539–46.CrossRefGoogle Scholar
  55. 55.
    Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90-Y glass microspheres. Q J Nucl Med Mol Imaging. 2012;56(6):503–8.PubMedGoogle Scholar
  56. 56.
    Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Mali WP, et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol. 2012;13(11):e464.Google Scholar
  57. 57.
    Senthamizhchelvan S, Hobbs RF, Song H, Frey EC, Zhang Z, Armour E, et al. Tumor dosimetry and response for 153Sm-ethylenediamine tetramethylene phosphonic acid therapy of high-risk osteosarcoma. J Nucl Med. 2012;53(2):215–24.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Buffa FM, Flux GD, Guy MJ, O’Sullivan JM, McCready VR, Chittenden SJ, et al. A model-based method for the prediction of whole-body absorbed dose and bone marrow toxicity for 186Re-HEDP treatment of skeletal metastases from prostate cancer. Eur J Nucl Med Mol Imaging. 2003;30(8):1114–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Shen S, Meredith RF, Duan J, Macey DJ, Khazaeli MB, Robert F, et al. Improved prediction of myelotoxicity using a patient-specific imaging dose estimate for non-marrow-targeting (90)Y-antibody therapy. J Nucl Med. 2002;43(9):1245–53.PubMedGoogle Scholar
  60. 60.
    Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O’Donoghue JA, et al. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. J Nucl Med. 2012;53(1):82–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Reardon DA, Quinn JA, Akabani G, Coleman RE, Friedman AH, Friedman HS, et al. Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med. 2006;47(6):912–8.PubMedGoogle Scholar
  62. 62.
    Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med. 2007;48(1):7.Google Scholar
  63. 63.
    Kulkarni K, Van Nostrand D, Atkins F, Aiken M, Burman K, Wartofsky L. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid. 2006;16(10):1019–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Leeper RD. The effect of 131I therapy on survival of patients with metastatic papillary or folliculary thyroid carcinoma. J Clin Endocrinol Metab. 1973;36:1143–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G; EANM Dosimetry Committee. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee JJ, Chung JK, Kim SE, Kang WJ, Park DJ, Lee DS, et al. Maximal safe dose of 131I after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med. 2008;22:727–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Dorn R, Kopp J, Vogt H, Heidenreich P, Carrol RG, Gulec SA. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44:451–6.PubMedGoogle Scholar
  68. 68.
    Chiesa C, Castellani MR, Vellani C, Orunesu E, Negri A, Azzeroni R, et al. Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Mol Imaging. 2009;53(5):546–61.Google Scholar
  69. 69.
    Strigari L, D’Andrea M, Maini CL, Sciuto R, Benassi M. Biological optimization of heterogeneous dose distributions in systemic radiotherapy. Med Phys. 2006;33(6):1857–66.PubMedCrossRefGoogle Scholar
  70. 70.
    Strigari L, Benassi M, Chiesa C, Cremonesi M, Bodei L, D’Andrea M. Dosimetry in nuclear medicine therapy: radiobiology application and results. Q J Nucl Med Mol Imaging. 2011;55(2):205–21.PubMedGoogle Scholar
  71. 71.
    Cwikla JB, Sankowski A, Seklecka N, Buscombe JR, Nasierowska-Guttmejer A, Jeziorski KG, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21(4):787–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Devizzi L, Guidetti A, Tarella C, Magni M, Matteucci P, Seregni E, et al. High-dose yttrium-90-ibritumomab tiuxetan with tandem stem-cell reinfusion: an outpatient preparative regimen for autologous hematopoietic cell transplantation. J Clin Oncol. 2008;26(32):5175–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.PubMedCrossRefGoogle Scholar
  74. 74.
    Salvatori M, Luster M. Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:821–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lidia Strigari
    • 1
    Email author
  • Mark Konijnenberg
    • 2
  • Carlo Chiesa
    • 3
  • Manuel Bardies
    • 4
  • Yong Du
    • 5
  • Katarina Sjögreen Gleisner
    • 6
  • Michael Lassmann
    • 7
  • Glenn Flux
    • 8
  1. 1.Laboratory of Medical Physics and Expert SystemsRegina Elena National Cancer InstituteRomeItaly
  2. 2.Department of Nuclear MedicineErasmus MCRotterdamThe Netherlands
  3. 3.Department of Nuclear MedicineInstituto Nazionale TumoriMilanItaly
  4. 4.Centre de Recherche en Cancerologie de ToulouseUMR 1037 INSERM / Université Paul SabatierToulouseFrance
  5. 5.Department of Nuclear Medicine and PET/CTRoyal Marsden NHS Foundation TrustSuttonUK
  6. 6.Medical Radiation Physics, Clinical SciencesLundSweden
  7. 7.Department of Nuclear MedicineUniversity of WürzburgWürzburgGermany
  8. 8.Joint Department of PhysicsRoyal Marsden NHS Foundation Trust & Institute of Cancer ResearchSuttonUK

Personalised recommendations