Skip to main content

Advertisement

Log in

18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Our aim was to investigate the association between 18F-fluorodeoxyglucose (FDG) uptake and event-free survival in patients in whom a differentiated thyroid cancer (DTC) was detected by 18F-FDG positron emission tomography (PET)/CT.

Methods

Among 884 focal 18F-FDG PET thyroid incidentalomas referred to our 4 Nuclear Medicine Departments, we investigated 54 patients in whom a DTC was confirmed and a clinical follow-up was available. The ratio between maximum standardized uptake value (SUVmax) of DTC and SUVmean of the liver (SUV ratio) was recorded for each scan. All patients underwent total thyroidectomy and 131I remnant ablation. After a median follow-up of 39 months we assessed the outcome. The association between disease persistence/progression, 18F-FDG uptake and other risk factors (T, N, M and histological subtype) was evaluated through univariate and multivariate analyses.

Results

Of the 54 patients, 39 achieved complete remission. The remaining 15 showed persistence/progression of disease. High 18F-FDG uptake, i.e. SUV ratio ≥3, showed a low positive predictive value (48 %). Low 18F-FDG uptake (SUV ratio < 3) displayed a high negative predictive value (93 %). The median of SUV ratios in T1–T2 (2.2), in M0 (2.7) and in non-virulent subtypes (2.7) were significantly lower (p < 0.03) than in T3–T4 (5.0), M1 (7.3) and virulent subtypes (6.0). Kaplan-Maier analysis showed a significant association between high 18F-FDG uptake and disease persistence/progression (p = 0.001). When we adjusted risk estimates by using a multivariate Cox model, only T (p = 0.05) remained independently associated with disease persistence/progression.

Conclusion

An intense 18F-FDG uptake of the primary DTC is associated with persistence/progression of disease. However, when all other prognostic factors have been taken into account, 18F-FDG uptake does not add further prognostic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bertagna F, Treglia G, Piccardo A, Giubbini R. Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J Clin Endocrinol Metab 2012;97:3866–75.

    Article  CAS  PubMed  Google Scholar 

  2. Pak K, Kim SJ, Kim IJ, Kim BH, Kim SS, Jeon YK. The role of 18F-fluorodeoxyglucose positron emission tomography in differentiated thyroid cancer before surgery. Endocr Relat Cancer 2013;20:R203–13.

    Article  CAS  PubMed  Google Scholar 

  3. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  4. Nishimori H, Tabah R, Hickeson M, How J. Incidental thyroid “PETomas”: clinical significance and novel description of the self-resolving variant of focal FDG-PET thyroid uptake. Can J Surg 2011;54:83–8.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Pagano L, Samà MT, Morani F, Prodam F, Rudoni M, Boldorini R, et al. Thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT): clinical and pathological relevance. Clin Endocrinol (Oxf) 2011;75:528–34.

    Article  CAS  Google Scholar 

  6. Zhai G, Zhang M, Xu H, Zhu C, Li B. The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography whole body imaging in the evaluation of focal thyroid incidentaloma. J Endocrinol Invest 2010;33:151–5.

    Article  CAS  PubMed  Google Scholar 

  7. Even-Sapir E, Lerman H, Gutman M, Lievshitz G, Zuriel L, Polliack A, et al. The presentation of malignant tumours and pre-malignant lesions incidentally found on PET-CT. Eur J Nucl Med Mol Imaging 2006;33:541–52.

    Article  PubMed  Google Scholar 

  8. Eloy JA, Brett EM, Fatterpekar GM, Kostakoglu L, Som PM, Desai SC, et al. The significance and management of incidental [18F]fluorodeoxyglucose-positron-emission tomography uptake in the thyroid gland in patients with cancer. AJNR Am J Neuroradiol 2009;30:1431–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kang BJ, O JH, Baik JH, Jung SL, Park YH, Chung SK. Incidental thyroid uptake on F-18 FDG PET/CT: correlation with ultrasonography and pathology. Ann Nucl Med 2009;23:729–37.

    Article  PubMed  Google Scholar 

  10. Bonabi S, Schmidt F, Broglie MA, Haile SR, Stoeckli SJ. Thyroid incidentalomas in FDG-PET/CT: prevalence and clinical impact. Eur Arch Otorhinolaryngol 2012;269:2555–60.

    Article  PubMed  Google Scholar 

  11. Pampaloni MH, Win AZ. Prevalence and characteristics of incidentalomas discovered by whole body FDG PET/CT. Int J Mol Imaging 2012. 10.1155/2012/476763.

  12. Bertagna F, Treglia G, Piccardo A, Giovannini E, Bosio G, Biasiotto G, et al. F18-FDG-PET/CT thyroid incidentalomas: a wide retrospective analysis in three Italian centres on the significance of focal uptake and SUV value. Endocrine 2013;43:678–85.

    Article  CAS  PubMed  Google Scholar 

  13. Giovanella L, Suriano S, Maffioli M, Ceriani L. 18FDG-positron emission tomography/computed tomography(PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol (Oxf) 2011;74:644–8.

    Article  Google Scholar 

  14. Deandreis D, Al Ghuzlan A, Auperin A, Vielh P, Caillou B, Chami L, et al. Is 18F-fluorodeoxyglucose-PET/CT useful for presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid 2012;22:165–72.

    Article  CAS  PubMed  Google Scholar 

  15. Feine U, Lietzenmayer R, Hanke JP, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468–72.

    CAS  PubMed  Google Scholar 

  16. Ciampi R, Vivaldi A, Romei C, Del Guerra A, Salvadori P, Cosci B, et al. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors. Mol Cell Endocrinol 2008;291:57–62.

    Article  CAS  PubMed  Google Scholar 

  17. Kaida H, Hiromatsu Y, Kurata S, Kawahara A, Hattori S, Taira T, et al. Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patient with papillary thyroid cancer. Nucl Med Commun 2011;32:690–8.

    Article  CAS  PubMed  Google Scholar 

  18. Are C, Hsu JF, Ghossein RA, Schoder H, Shah JP, Shaha AR. Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol 2007;14:3210–5.

    Article  PubMed  Google Scholar 

  19. Al-Sarraf N, Gately K, Lucey J, Aziz R, Doddakula K, Wilson L, et al. Clinical implication and prognostic significance of standardised uptake value of primary non-small cell lung cancer on positron emission tomography: analysis of 176 cases. Eur J Cardiothorac Surg 2008;34:892–7.

    Article  PubMed  Google Scholar 

  20. Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18F-fluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol 2010;17:115–22.

    Article  PubMed  Google Scholar 

  21. Park JC, Lee JH, Cheoi K, Chung H, Yun MJ, Lee H, et al. Predictive value of pretreatment metabolic activity measured by fluorodeoxyglucose positron emission tomography in patients with metastatic advanced gastric cancer: the maximal SUV of the stomach is a prognostic factor. Eur J Nucl Med Mol Imaging 2012;39:1107–16.

    Article  CAS  PubMed  Google Scholar 

  22. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91:498–505.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe H, Kanematsu M, Goshima S, Kondo H, Kawada H, Noda Y, et al. Adrenal-to-liver SUV ratio is the best parameter for differentiation of adrenal metastases from adenomas using (18)F-FDG PET/CT. Ann Nucl Med 2013;27:648–53.

    Article  CAS  PubMed  Google Scholar 

  24. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W, et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006;154:787–803.

    Article  CAS  PubMed  Google Scholar 

  25. Lo CY, Chan WF, Lam KY, Wan KY. Follicular thyroid carcinoma: the role of histology and staging systems in predicting survival. Ann Surg 2005;242:708–15.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Baloch Z, LiVolsi VA, Tondon R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called ‘real thyroid carcinomas’. J Clin Pathol 2013;66:733–43.

    Article  PubMed  Google Scholar 

  27. Mazzaferri EL, Robbins RJ, Spencer A, Braverman LE, Pacini F, Wartofsky L, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 2003;88:1433–41.

    Article  CAS  PubMed  Google Scholar 

  28. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999;35:1773–82.

    Article  CAS  PubMed  Google Scholar 

  29. Treglia G, Bertagna F, Piccardo A, Giovanella L. 131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound? Clin Transl Imaging. 2013. doi:10.1007/s40336-013-0024-0.

    Google Scholar 

  30. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447–63.

    Article  CAS  PubMed  Google Scholar 

  31. Schlumberger M, Berg G, Cohen O, Duntas L, Jamar F, Jarzab B, et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur J Endocrinol 2004;150:105–12.

    Article  CAS  PubMed  Google Scholar 

  32. Piccardo A, Foppiani L, Morbelli S, Bianchi P, Barbera F, Biscaldi E, et al. Could [18]F-fluorodeoxyglucose PET/CT change the therapeutic management of stage IV thyroid cancer with positive (131)I whole body scan? Q J Nucl Med Mol Imaging 2011;55:57–65.

    CAS  PubMed  Google Scholar 

  33. Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging 2012;39:1373–80.

    Article  PubMed  Google Scholar 

  34. Lee JW, Lee SM, Lee DH, Kim YJ. Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate-to-high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients. J Nucl Med 2013;54:1230–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Piccardo.

Additional information

Fabio Orlandi and Luca Giovanella share senior co-authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccardo, A., Puntoni, M., Bertagna, F. et al. 18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging 41, 1482–1491 (2014). https://doi.org/10.1007/s00259-014-2774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2774-y

Keywords

Navigation