Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

  • Anne I. J. Arens
  • Esther G. C. Troost
  • Bianca A. W. Hoeben
  • Willem Grootjans
  • John A. Lee
  • Vincent Grégoire
  • Mathieu Hatt
  • Dimitris Visvikis
  • Johan Bussink
  • Wim J. G. Oyen
  • Johannes H. A. M. Kaanders
  • Eric P. Visser
Original Article

Abstract

Purpose

Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome.

Methods

The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTVCT). PVs were visually determined on all PET scans (PVVIS). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PVRTL), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PVW&C), and a fuzzy locally adaptive Bayesian algorithm (PVFLAB).

Results

Pretreatment PVVIS correlated best with PVFLAB and GTVCT. Correlations with PVRTL and PVW&C were weaker although statistically significant. During treatment, the PVVIS, PVW&C and PVFLAB significant decreased over time with the steepest decline over time for PVFLAB. Among these advanced segmentation methods, PVFLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PVW&C and 27 % for PVRTL). A decrease in PVFLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %).

Conclusion

In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.

Keywords

18F-Fluorothymidine PET Head and neck cancer Delineation Radiotherapy Outcome 

References

  1. 1.
    Hermans R, Feron M, Bellon E, Dupont P, Van den Bogaert W, Baert AL. Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. Int J Radiat Oncol Biol Phys. 1998;40:553–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med. 2010;51:866–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Overgaard J, Hansen HS, Specht L, Overgaard M, Grau C, Andersen E, et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial. Lancet. 2003;362:933–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.PubMedCrossRefGoogle Scholar
  7. 7.
    van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.PubMedGoogle Scholar
  8. 8.
    Menda Y, Boles Ponto LL, Dornfeld KJ, Tewson TJ, Watkins GL, Schultz MK, et al. Kinetic analysis of 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med. 2009;50:1028–35.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hoeben BA, Troost EG, Span PN, Herpen CM, Bussink J, Oyen W, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54:532–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Everitt S, Hicks RJ, Ball D, Kron T, Schneider-Kolsky M, Walter T, et al. Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;75:1098–104.PubMedCrossRefGoogle Scholar
  11. 11.
    de Langen AJ, Klabbers B, Lubberink M, Boellaard R, Spreeuwenberg MD, Slotman BJ, et al. Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging. 2009;36:389–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Boles Ponto LL, Menda Y, Dornfeld K, Tewson TJ, Watkins GL, Sunderland J, et al. Stability of 3′-deoxy-3′-[18F]fluorothymidine standardized uptake values in head and neck cancer over time. Cancer Biother Radiopharm. 2010;25:361–3. doi:10.1089/cbr.2009.0709.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 2003;69:247–50.PubMedCrossRefGoogle Scholar
  14. 14.
    van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun. 2007;28:485–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.PubMedCrossRefGoogle Scholar
  16. 16.
    Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Zaidi H, Abdoli M, Fuentes CL, El Naqa IM. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:881–91.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-18F-fluorothymidine. J Radioanal Nucl Chem. 2000;243:843–6.CrossRefGoogle Scholar
  19. 19.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28:881–93.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, van den Ende P, et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol. 2012;30:1777–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Troost EG, Vogel WV, Merkx MA, Slootweg PJ, Marres HA, Peeters WJ, et al. 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med. 2007;48:726–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Krak NC, Boellaard R, Hoekstra OS, Twisk JW, Hoekstra CJ, Lammertsma AA. Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial. Eur J Nucl Med Mol Imaging. 2005;32:294–301.PubMedCrossRefGoogle Scholar
  23. 23.
    Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging. 2010;37:1408–25.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82:1164–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Wanet M, Lee JA, Weynand B, De Bast M, Poncelet A, Lacroix V, et al. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches, CT and surgical specimens. Radiother Oncol. 2011;98:117–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Cheebsumon P, Boellaard R, de Ruysscher D, van Elmpt W, van Baardwijk A, Yaqub M, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res. 2012;2:56.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.PubMedCrossRefGoogle Scholar
  28. 28.
    Dibble EH, Alvarez AC, Truong MT, Mercier G, Cook EF, Subramaniam RM. 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: adding value to clinical staging. J Nucl Med. 2012;53:709–15.PubMedCrossRefGoogle Scholar
  29. 29.
    Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D. PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging. 2011;38:663–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Heijmen L, de Geus-Oei LF, de Wilt JH, Visvikis D, Hatt M, Visser EP, et al. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer. Eur J Nucl Med Mol Imaging. 2012;39:1858–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatt M, Groheux D, Martineau A, Espie M, Hindie E, Giacchetti S, et al. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hatt M, van Stiphout R, le Pogam A, Lammering G, Visvikis D, Lambin P. Early prediction of pathological response in locally advanced rectal cancer based on sequential 18F-FDG PET. Acta Oncol. 2013;52:619–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le RC. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38:1191–202.PubMedCrossRefGoogle Scholar
  35. 35.
    Troost EG, Bussink J, Slootweg PJ, Peeters WJ, Merkx MA, van der Kogel AJ, et al. Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET in squamous cell carcinoma of the oral cavity. J Nucl Med. 2010;51:713–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anne I. J. Arens
    • 1
  • Esther G. C. Troost
    • 2
    • 3
  • Bianca A. W. Hoeben
    • 2
  • Willem Grootjans
    • 1
  • John A. Lee
    • 4
  • Vincent Grégoire
    • 4
  • Mathieu Hatt
    • 5
  • Dimitris Visvikis
    • 5
  • Johan Bussink
    • 2
  • Wim J. G. Oyen
    • 1
  • Johannes H. A. M. Kaanders
    • 2
  • Eric P. Visser
    • 1
  1. 1.Department of Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Department of Radiation OncologyRadboud University Medical CenterNijmegenThe Netherlands
  3. 3.MAASTRO clinic, GROW School for Oncology and Developmental BiologyMaastricht University Medical CentreMaastrichtThe Netherlands
  4. 4.Department of Radiation Oncology, Université Catholique de LouvainSt-Luc University HospitalBrusselsBelgium
  5. 5.INSERM UMR1101Laboratoire de Traitement de l’Information Médicale (LaTIM)BrestFrance

Personalised recommendations