The origins of SPECT and SPECT/CT

  • Brian F. HuttonEmail author
Review Article


Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.


Single photon emission tomography SPECT SPECT/CT 


Acknowledgments and omissions

In an overview of this type it is difficult to ensure that facts are correct and that the many people who contributed to the development are appropriately recognized. I therefore offer apologies for any omissions or errors in this article. Thanks to Angela da Silva for details on the Philips Brightview system. Thanks also to Carlo Fiorini and Paulo Busca at POLIMI, Milan, for discussion and diagrams on solid-state readout systems. UCL and UCLH are supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Conflicts of interest

The author has no conflicts of interest. The Institute of Nuclear Medicine at UCL receives research support from GE Healthcare, Siemens Healthcare and Spectrum Dynamics.


  1. 1.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, PA: Elsevier Health Sciences; 2003. p. 299–324.Google Scholar
  2. 2.
    Zeng GL, Galt JR, Wernick MN, Mintzer RA, Aarsvold JN. Single-photon emission computed tomography. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 127–52.CrossRefGoogle Scholar
  3. 3.
    Jaszczak RJ. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol. 2006;51:R99–115.PubMedCrossRefGoogle Scholar
  4. 4.
    Hutton BF, Beekman FJ. SPECT and SPECT/CT. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS, editors. Molecular imaging: principles and practice. Shelton: People’s Medical Publishing House - USA; 2010. p. 40–53.Google Scholar
  5. 5.
    Webb S. From the Watching of Shadows: the origins of radiological tomography. Bristol: Adam Hilger; 1990.Google Scholar
  6. 6.
    Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology. 1963;80:653–62.Google Scholar
  7. 7.
    Kuhl DE, Hale J, Eaton WL. Transmission scanning: a useful adjunct to conventional emission scanning for accurately keying isotope deposition to radiographic anatomy. Radiology. 1966;87:278–84.PubMedGoogle Scholar
  8. 8.
    Kuhl DE, Edwards RQ. The Mark III scanner: a compact device for multiple-view and section scanning of the brain. Radiology. 1970;96:563–70.PubMedGoogle Scholar
  9. 9.
    Bowley AR, Taylor CG, Causer DA, Barber DC, Keyes WI, Undrill PE, et al. A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning: (ASS – the Aberdeen Section Scanner). Br J Radiol. 1973;46:262–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Anger HO. Scintillation camera. Rev Sci Instrum. 1958;29:27–33.CrossRefGoogle Scholar
  11. 11.
    Anger HO, Price DC, Yost PE. Transverse section tomography with the scintillation camera. J Nucl Med. 1967;8:314.Google Scholar
  12. 12.
    Budinger TF, Gullberg GT. Three dimensional reconstruction in nuclear medicine emission imaging. IEEE Trans Nucl Sci. 1974;21:2–19.CrossRefGoogle Scholar
  13. 13.
    Muellehner G. A tomographic scintillation camera. Phys Med Biol. 1971;16:87–96.CrossRefGoogle Scholar
  14. 14.
    Huesman RH, Gullberg GT, Greenberg WL, Budinger TF. Donner algorithms for reconstruction tomography. RECLBL library users manual, Publication 214. University of California: Lawrence Berkeley Laboratory; 1977.Google Scholar
  15. 15.
    Keyes JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron – a scintillation camera transaxial tomography. J Nucl Med. 1977;18:381–7.PubMedGoogle Scholar
  16. 16.
    Jaszczak RJ, Murphy PH, Huard D, Burdine JA. Radionuclide emission computed tomography of the head with 99mTc and a scintillation camera. J Nucl Med. 1977;18:373–80.PubMedGoogle Scholar
  17. 17.
    Larsson SA. Gamma camera emission tomography: development and properties of a multi-sectional emission computed tomography system. Acta Radiol Suppl. 1980;363:1–75.PubMedGoogle Scholar
  18. 18.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Anger HO. Tomographic gamma-ray scanner with simultaneous readout of several planes. In: Gottschalk A, Beck RN, editors. Fundamental problems in scanning. Springfield: Charles C Thomas; 1968.Google Scholar
  20. 20.
    Myers MJ, Keyes WI, Mallard JR. An analysis of tomographic scanning systems. Symposium on Medical Radioisotope Scintigraphy 1972, vol. 1. Vienna: International Atomic Energy Agency; 1973. p. 331–45.Google Scholar
  21. 21.
    McAfee JG, Mozley JM, Stabler EP. Longitudinal tomographic radioisotope imaging with a scintillation camera: theoretical considerations of a new method. J Nucl Med. 1969;10:654–9.PubMedGoogle Scholar
  22. 22.
    Walker WG. Tomographic radiation camera. US patent 3612865 1968–71.Google Scholar
  23. 23.
    Freedman GS. Tomography with a gamma camera. J Nucl Med. 1970;11:602–4.PubMedGoogle Scholar
  24. 24.
    Muellehner G. Tomographic imaging device using a rotating slanted multichannel collimator. US Patent 3684886 1970–2.Google Scholar
  25. 25.
    Muellehner G. Tomographic imaging device. US Patent 3852603 1973–4Google Scholar
  26. 26.
    Vogel RA, Kirch D, LeFree M, Steel PC. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J Nucl Med. 1978;19:648–54.PubMedGoogle Scholar
  27. 27.
    Beekman FJ, van der Have F. The Pinhole: gateway to ultra-high resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34:151–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Barrett HH, DeMeester AD, Wilson DT, Farmelant MH. Tomographic imaging with a Fresnel zoneplate camera. In: Freedman GS, editor. Tomographic imaging in nuclear medicine. New York: Society of Nuclear Medicine; 1974.Google Scholar
  29. 29.
    Knoll GF, Williams JJ. Application of a ring pseudorandom aperture for transverse section tomography. IEEE Trans Nucl Sci. 1979;245:581–6.Google Scholar
  30. 30.
    Knoll GF, Rogers WL, Koral KF, Stamos JA, Clinthorne NH. Application of coded apertures in tomographic head scanning. Nucl Instrum Methods. 1984;221:226–32.CrossRefGoogle Scholar
  31. 31.
    Brill AB, Patton JA, Erickson JJ, King PH. Multicrystal tomographic scanner for mapping thin cross sections of radioactivity in an organ of the human body. US patent 3591806 1970–1.Google Scholar
  32. 32.
    Patton JA, Brill AB, Erickson JJ, Cook WE, Johnstone RE. A new approach to the mapping of three-dimensional radionuclide distributions. J Nucl Med. 1969;10:363.Google Scholar
  33. 33.
    Pickens DR, King PH, Patton JA, Brill AB. The design, construction and preliminary testing of a mutually orthogonal coincident focal point tomographic scanner. Proceedings of the 13th Annual Meeting of the Association for the Advancement of Medical Instrumentation, 1978, Washington DC. Arlington, VA: Association for the Advancement of Medical Instrumentation; 1978Google Scholar
  34. 34.
    Stoddart HF, Stoddart HA. A new development in single gamma transaxial tomography: Union Carbide focused collimator scanner. IEEE Trans Nucl Sci. 1979;NS-26:2710–2.CrossRefGoogle Scholar
  35. 35.
    Jarritt PH, Ell PJ, Myers MJ, Brown JG, Deacon JM. A new transverse-section brain imager for single-gamma emitters. J Nucl Med. 1979;20:319–27.PubMedGoogle Scholar
  36. 36.
    Moore SC, Doherty MD, Zimmerman RE, Holman BL. Improved performance from modifications to the multidetector SPECT brain scanner. J Nucl Med. 1984;25:688–91.PubMedGoogle Scholar
  37. 37.
    Rogers WL, Clinthorne NH, Stamos J, Koral KF, et al. SPRINT: a stationary detector single photon ring tomography for brain imaging. IEEE Trans Med Imaging. 1982;1:63–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Rogers WL, Clinthorne NH, Shao L, Chiao P, Ding Y, Stamos JA, et al. SPRINT II: a second generation single photon ring tomograph. IEEE Trans Med Imaging. 1988;7:291–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Metzler SD, Accorsi R, Novak JR, Aya NAS, Jaszczak RJ. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47:1884–90.PubMedGoogle Scholar
  40. 40.
    Mahmood ST, Erlandsson K, Cullum I, Hutton BF. Design of a novel slit-slat collimator system for SPECT imaging of the human brain. Phys Med Biol. 2009;54:3433–49.PubMedCrossRefGoogle Scholar
  41. 41.
    Stokely EM, Sveinsdottir E, Lassen NA, Rommer P. A single photon dynamic computer assisted tomography (DCAT) for imaging brain function in multiple cross sections. J Comput Assist Tomogr. 1980;4:230–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Genna S, Smith AP. The development of ASPECT, an annular single crystal brain camera for high efficiency SPECT. IEEE Trans Nucl Sci. 1988;35:654–8.CrossRefGoogle Scholar
  43. 43.
    Kanno I, Uemura K, Shuichi M, Yuko M. Headtome: a hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomogr. 1981;5:216–26.PubMedCrossRefGoogle Scholar
  44. 44.
    Kimura K, Hashikawa K, Etani H, Uehara A, Kozuka T, Moriwaki H, et al. A new apparatus for brain imaging: four-head rotating gamma camera single photon emission computed tomography. J Nucl Med. 1990;31:603–9.PubMedGoogle Scholar
  45. 45.
    Klein WP, Barrett HH, Pang IW, Patton DD. FASTSPECT: electrical and mechanical design of a high-resolution dynamic SPECT imager. Nuclear Science Symposium Medical Imaging Conference Record, 1995. IEEE. vol. 2, p. 931–2.Google Scholar
  46. 46.
    Brzymialhiewicz CN, Tornai MP, McKinley RL, Bowsher JE. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector. IEEE Trans Med Imaging. 2005;24:868–77.CrossRefGoogle Scholar
  47. 47.
    Madsen M. Recent advances in SPECT imaging. J Nucl Med. 2007;48:661–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52:210–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Patton JA, Slomka PJ, Germano G, Berman DS. Recent technological advances in nuclear cardiology. J Nucl Cardiol. 2007;14:555–65.CrossRefGoogle Scholar
  50. 50.
    Hutton BF. Developments in cardiac-specific SPECT imaging. Q J Nucl Med. 2012;56:221–9.Google Scholar
  51. 51.
    Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R 2nd, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17:459–69.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Chang W, Ordonez CE, Liang H, Li Y, Liu J. C-SPECT – a clinical cardiac SPECT/TCT platform: design concepts and performance potential. IEEE Trans Nucl Sci. 2009;56:2659–71.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Wagenaar DJ. CdTe and CdZnTe semiconductor detectors for nuclear medicine imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 269–91.CrossRefGoogle Scholar
  54. 54.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16:927–34.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Funk T, Kirch DL, Koss JE, Botvinick E, Hasagawa B. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med. 2006;47:596–602.Google Scholar
  57. 57.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50:635–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Evaluation of the performance characteristics of D-SPECT: a novel SPECT system designed for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Barrett HH, Furenlid LR, Freed M, Hesterman JY, Kupinski MA, Clarkson E, et al. Adaptive SPECT. IEEE Trans Med Imaging. 2008;27:775–88.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Freed M, Kupinski MA, Furenlid LR, Barrett HH. A prototype instrument for adaptive SPECT imaging. Proc SPIE. 2007;6510. doi: 10.1117/12.708818.
  61. 61.
    Moore JW, Furenlid LR, Barrett HH. Instrumentation design for adaptive SPECT/CT. Nuclear Science Symposium Medical Imaging Conference Record, 2008. IEEE. p. 5585–5587.Google Scholar
  62. 62.
    Pichler BJ, Ziegler SI. Photodetectors. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 255–67.CrossRefGoogle Scholar
  63. 63.
    Shah KS, Farrell R, Grazioso R, Harmon ES, Karplus E. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci. 2002;49:1687–92.CrossRefGoogle Scholar
  64. 64.
    Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Meth A. 2006;563:368–76.CrossRefGoogle Scholar
  65. 65.
    Schaart DR, van Dam HT, Deifert S, Vinke R, Dendooven P, Löhner H, et al. A novel SiPM-array-based monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Fiorini C, Longoni A, Perotti F. New detectors for gamma-ray spectroscopy and imaging, based on scintillators coupled to silicon drift detectors. Nucl Instrum Meth A. 2000;604:101–3.CrossRefGoogle Scholar
  67. 67.
    Fiorini C, Longoni A, Perotti F, Labanti C, Rossi E, Lechner P, et al. A monolithic array of silicon drift detectors coupled to a single scintillator for gamma-ray imaging with sub-millimeter position resolution. Nucl Instrum Meth A. 2003;512:265–71.CrossRefGoogle Scholar
  68. 68.
    Tan LJ, Cai L, Meng LJ. A prototype of the MR-compatible ultra-high resolution SPECT for in vivo mice brain imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 2800–5.Google Scholar
  69. 69.
    Hamamura MJ, Ha S, Roeck WW, Muffuler LT, Wagenaar DJ, Meier D, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol. 2010;55:1563–75.PubMedCrossRefGoogle Scholar
  70. 70.
    Fiorini C, Busca P, Peloso R, Abba A, Geraci A, Bianchi C, et al. The HICAM gamma camera. IEEE Trans Nucl Sci. 2012;59:537–44.CrossRefGoogle Scholar
  71. 71.
    Busca P, Fiorini C, Butt AD, Occhipinti M, Peloso R, Quaglia R, et al. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging. Nucl Instrum Meth Phys Res A. 2013. doi: 10.1016/j.nima.2013.08.064.
  72. 72.
    Beekman FJ, de Vre GA. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution. Phys Med Biol. 2005;50:N109–19.PubMedCrossRefGoogle Scholar
  73. 73.
    Nagarkar VV, Shestakova I, Gaysinskiy V, Tipnis SV, Singh B, Barber W, et al. A CCD-based detector for SPECT. IEEE Trans Nucl Sci. 2006;53:54–8.CrossRefGoogle Scholar
  74. 74.
    Miller BW, Barber HB, Barrett HH, Shestakova I, Singh B, Nagarkar VV. Single-photon spatial and energy resolution enhancement of a columnar CsI(Tl)/EMCCD gamma-camera using maximum-likelihood estimation. Proc SPIE. 2006;6142. doi: 10.1117/12.652650
  75. 75.
    Rogulski MM, Barber HB, Barrett HH, Shoemaker RL, Woolfenden JM. Ultra-high-resolution brain SPECT imaging: simulation results. IEEE Trans Nucl Sci. 1993;40:1123–9.CrossRefGoogle Scholar
  76. 76.
    Goorden MC, Rentmeester MC, Beekman FJ. Theoretical analysis of full-ring multi-pinhole brain SPECT. Phys Med Biol. 2009;54:6593–610.PubMedCrossRefGoogle Scholar
  77. 77.
    Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci. 2003;50:315–20.CrossRefGoogle Scholar
  78. 78.
    Beekman FJ, van der Have F, Vastenhouw B, van der Linden AJA, van Rijk PP, Burbach JPH, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabelled molecules in mice. J Nucl Med. 2005;46:1194–200.PubMedGoogle Scholar
  79. 79.
    Todd RW, Nightingale JM, Everett DB. A proposed gamma-camera. Nature. 1974;25:132–4.CrossRefGoogle Scholar
  80. 80.
    Singh M. An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys. 1983;10:421–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh M, Doria D. An electronically collimated gamma camera for single photon emission computed tomography. Part II: image reconstruction and preliminary experimental measurements. Med Phys. 1983;10:428–35.PubMedCrossRefGoogle Scholar
  82. 82.
    LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers WL, Wehe DK, et al. C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci. 1998;45:943–9.CrossRefGoogle Scholar
  83. 83.
    Rogers WL, Clinthorne NH, Bolozdyna A. Compton cameras for nuclear medical imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of SPECT and PET. San Diego, CA: Elsevier; 2004. p. 383–419.CrossRefGoogle Scholar
  84. 84.
    Kabuki S, Hattori K, Kohara R, Kunieda E, Kubo A, Kubo H, et al. Development of electron tracking Compton camera using micro pixel gas chamber for medical imaging. Nucl Instrum Meth A. 2007;580:1031–5.CrossRefGoogle Scholar
  85. 85.
    Orito R, Kubo H, Miuchi K, Nagayoshi T, Takada A, Takeda A, et al. Compton gamma-ray imaging detector with electron tracking. Nucl Instrum Meth A. 2004;525:107–13.CrossRefGoogle Scholar
  86. 86.
    Harkness LJ, Boston AJ, Boston HC, Cresswell JR, Grint AN, Lazarus I, et al. Design considerations of a Compton camera for low energy medical imaging. AIP Conf Proc. 2009;1194:90–5.CrossRefGoogle Scholar
  87. 87.
    Peterson TE, Furenlid LR. SPECT detectors: the Anger camera and beyond. Phys Med Biol. 2011;56:R145–82.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Moses WW, Shah KS. Potential for RbGd2Br7:Ce, LaBr3:Ce, LaBr3:Ce, and LuI3:Ce in nuclear medical imaging. Nucl Instrum Meth A. 2005;537:317–20.CrossRefGoogle Scholar
  89. 89.
    Rajaram R, Bhattacharya M, Xinhong D, Malmin R, Rempel TD, Vija AH, Zeintl J. Tomographic performance characteristics of the IQ SPECT system. Nuclear Science Symposium Medical Imaging Conference Record, 2011. IEEE. p. 2451–6.Google Scholar
  90. 90.
    Keyes WI. The fan-beam gamma camera. Phys Med Biol. 1975;20:489–93.PubMedCrossRefGoogle Scholar
  91. 91.
    Gindi GR, Arendt K, Barrett HH, Chiu MY, Ervin A, Giles CL, et al. Imaging with rotating slit apertures and rotating collimators. Med Phys. 1982;9:324–39.PubMedCrossRefGoogle Scholar
  92. 92.
    Lodge MA, Webb S, Flower MA, Binnie DM. A prototype rotating slat collimator for single photon emission computed tomography. IEEE Trans Med Imaging. 1996;15:500–11.PubMedCrossRefGoogle Scholar
  93. 93.
    Chang W, Lin SL, Henkin RE. A new collimator for cardiac tomography: the quadrant slat-hole collimator. J Nucl Med. 1982;23:830–5.PubMedGoogle Scholar
  94. 94.
    Bal G, DiBella EVR, Gullberg GT, Zeng GL. Cardiac imaging using a four-segment slant-hole collimator. IEEE Trans Nucl Sci. 2006;53:2619–27.CrossRefGoogle Scholar
  95. 95.
    Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med. 1998;25:774–87.PubMedCrossRefGoogle Scholar
  96. 96.
    Macey D, Marshall R. Absolute quantification of radiotracer uptake in lungs using a gamma camera. J Nucl Med. 1984;23:731–35.Google Scholar
  97. 97.
    Malko JA, van Heertum RL, Gullberg GT, Kowalsky WP. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med. 1986;27:701–5.PubMedGoogle Scholar
  98. 98.
    Greer KL, Harris CC, Jaszczak RJ, Colemen RE, Hedland LW, Floyd CE, et al. Transmission computed tomography data acquisition with a SPECT system. J Nucl Med Tech. 1987;15:53–6.Google Scholar
  99. 99.
    Tsui BMW, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med. 1989;30:497–507.PubMedGoogle Scholar
  100. 100.
    Morozumi T, Nakajima M, Ogawa K, Yuta S. Attenuation correction methods using the information of attenuation distribution for single photon emission CT. Med Imaging Tech. 1984;2:20–8.Google Scholar
  101. 101.
    Bailey B, Hutton B, Walker P. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med. 1987;28:844–51.PubMedGoogle Scholar
  102. 102.
    Celler A, Sitek A, Stoub E, Hawman P, Harrop R, Lyster D. Multiple line source array for SPECT transmission scans: simulation, phantom and patient studies. J Nucl Med. 1998;39:2183–9.PubMedGoogle Scholar
  103. 103.
    Gagnon D. Beacon-STM: non-uniform attenuation correction for SPECT imaging. Nucl Med Rev. 1999;2:87–92.Google Scholar
  104. 104.
    Zeng GL, Gullberg GT, Christian PE, Gagnon D, Tung C-H. Asymmetric cone-beam transmission tomography. IEEE Trans Nucl Sci. 2001;48:117–24.CrossRefGoogle Scholar
  105. 105.
    Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Non-uniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci. 1992;39:1134–43.CrossRefGoogle Scholar
  106. 106.
    Gullberg GT, Morgan HT, Zeng GL, Christian PE, Di Bella EVR, Tung C-H, et al. The design and performance of a simultaneous transmission and emission tomography system. IEEE Trans Nucl Sci. 1998;45:1676–98.CrossRefGoogle Scholar
  107. 107.
    Tan P, Bailey DL, Meikle SR, Eberl S, Fulton RR, Hutton BF. A scanning line source for simultaneous emission and transmission measurements in SPECT. J Nucl Med. 1993;34:1752–60.PubMedGoogle Scholar
  108. 108.
    Beekman FJ, Kamphuis C, Hutton BF, van Rijk PP. Half-fanbeam collimators combined with scanning point sources for simultaneous emission-transmission imaging. J Nucl Med. 1996;39:1996–2003.Google Scholar
  109. 109.
    Hendel RC, Corbett JR, Cullom SJ, Depuey EG, Garcia EV, Batemen TM. The value and practice of attenuation correction for myocardial perfusion SPECT Imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Med. 2002;43:273–80.Google Scholar
  110. 110.
    O’Connor MK, Kemp B. A multicenter evaluation of commercial attenuation compensation techniques in cardiac SPECT using phantom models. J Nucl Cardiol. 2002;9:361–76.PubMedCrossRefGoogle Scholar
  111. 111.
    Hasegawa BH, Gingold EL, Reilly SM, Liew SC, Cann CE. Description of a simultaneous emission-transmission CT system. Proc SPIE. 1990;1231:50–60.CrossRefGoogle Scholar
  112. 112.
    Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.PubMedGoogle Scholar
  113. 113.
    Blankespoor SC, Xu K, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996;43:2263–74.CrossRefGoogle Scholar
  114. 114.
    Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with x-ray tube-based attenuation maps. J Nucl Med. 2000;41:1364–8.PubMedGoogle Scholar
  115. 115.
    Hamann M, Aldridge M, Dickson J, Endozo R, Lozhkin K, Hutton BF. Evaluation of a low-dose/slow-rotating SPECT-CT system. Phys Med Biol. 2008;53:2495–508.PubMedCrossRefGoogle Scholar
  116. 116.
    Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging. 2007;34:1415–26.PubMedCrossRefGoogle Scholar
  117. 117.
    Beekman FJ, Hutton BF. Multi-modality imaging on track. Eur J Nucl Med Mol Imaging. 2007;34:1410–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography. Proc SPIE. 2006;6319. doi: 10.1117/12.683765
  119. 119.
    Kindem J, Bai C, Conwell R. CsI(Tl)/PIN solid state detectors for combined high resolution SPECT and CT imaging. Nuclear Science Symposium Medical Imaging Conference Record, 2010. IEEE. p. 1987–90.Google Scholar
  120. 120.
    Sowards-Emmerd D, Balakrishnan K, Wiener J, Shao L, Ye J. CBCT-subsystem performance of the multi-modality Brightview XCT system. Nuclear Science Symposium Medical Imaging Conference Record, 2009. IEEE. p. 3053–8.Google Scholar
  121. 121.
    Nuyts J, Dupont P, Stroobants S, Bennick R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sonograms. IEEE Trans Med Imaging. 1999;18:393–403.PubMedCrossRefGoogle Scholar
  122. 122.
    Cade SC, Arridge S, Evans MJ, Hutton BF. Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning. Med Phys. 2013;40:082506PubMedCrossRefGoogle Scholar
  123. 123.
    Townsend DW. Multimodality imaging of structure and function. Phys Med Biol. 2008;53:R1–39.PubMedCrossRefGoogle Scholar
  124. 124.
    Patton JA, Townsend DW, Hutton BF. Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med. 2009;39:247–63.PubMedCrossRefGoogle Scholar
  125. 125.
    Hounsfield GN. Computerised transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.PubMedCrossRefGoogle Scholar
  126. 126.
    Ambrose J. Computerised transverse axial scanning (tomography). 2. Clinical application. Br J Radiol. 1973;46:1023–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Nuclear MedicineUniversity College LondonLondonUK
  2. 2.Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia

Personalised recommendations