Skip to main content
Log in

Towards an optimal semiquantitative approach in giant cell arteritis: an 18F-FDG PET/CT case-control study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript



Giant cell arteritis (GCA) is the most common form of vasculitis in western countries. 18F-FDG PET has been shown to be a valuable tool for the diagnosis of extracranial GCA, but results of studies are inconsistent due to a lack of standardized 18F-FDG PET criteria. In this study, we compared different semiquantitative approaches using a controlled design to define the most efficient method.


All patients with biopsy-proven GCA who had undergone an 18F-FDG PET/CT scan in our PET unit were reviewed and matched with a control group based on age and sex. Different semiquantitative arterial (ascending and descending thoracic aorta and aortic arch) to background (liver, lung and venous blood pool) SUV ratios were blindly compared between GCA patients and matched controls.


We included 11 patients with biopsy-proven GCA cases and 11 matched controls. There were no differences between the groups with regard to body weight, injected radioactivity, blood glucose level or CRP. The arterial to venous blood pool ratios discriminated the two groups better than other methods when applied to the aortic arch and the descending thoracic aorta (p < 0.015). In particular, the highest aortic to highest blood pool SUVmax ratio, when applied to the aortic arch, provided optimal diagnostic performance (sensitivity 81.8 %, specificity 91 %, AUC 0.87; p < 0.0001) using a cut-off value of 1.53.


Among all tested 18F-FDG PET/CT methods, the aortic to blood pool SUVmax ratio outperformed the liver and lung ratios. We suggest the use of this ratio for the assessment of aortic inflammation in GCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Gonzalez-Gay MA, Vazquez-Rodriguez TR, Lopez-Diaz MJ, Miranda-Filloy JA, Gonzalez-Juanatey C, Martin J, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum. 2009;61:1454–61. doi:10.1002/art.24459.

    Article  PubMed  Google Scholar 

  2. Weyand CM, Goronzy JJ. Giant-cell arteritis and polymyalgia rheumatica. Ann Intern Med. 2003;139:505–15.

    Article  PubMed  Google Scholar 

  3. Weyand CM, Goronzy JJ. Medium- and large-vessel vasculitis. N Engl J Med. 2003;349:160–9. doi:10.1056/NEJMra022694.

    Article  PubMed  CAS  Google Scholar 

  4. Salvarani C, Cantini F, Hunder GG. Polymyalgia rheumatica and giant-cell arteritis. Lancet. 2008;372:234–45. doi:10.1016/S0140-6736(08)61077-6.

    Article  PubMed  Google Scholar 

  5. Hunder GG, Bloch DA, Michel BA, Stevens MB, Arend WP, Calabrese LH, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 1990;33:1122–8.

    Article  PubMed  CAS  Google Scholar 

  6. Hauser WA, Ferguson RH, Holley KE, Kurland LT. Temporal arteritis in Rochester, Minnesota, 1951 to 1967. Mayo Clin Proc. 1971;46:597–602.

    PubMed  CAS  Google Scholar 

  7. Hall S, Persellin S, Lie JT, O’Brien PC, Kurland LT, Hunder GG. The therapeutic impact of temporal artery biopsy. Lancet. 1983;2:1217–20.

    Article  PubMed  CAS  Google Scholar 

  8. Roth AM, Milsow L, Keltner JL. The ultimate diagnoses of patients undergoing temporal artery biopsies. Arch Ophthalmol. 1984;102:901–3.

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, Gonzalez-Louzao C, Rodriguez-Ledo P. Biopsy-negative giant cell arteritis: clinical spectrum and predictive factors for positive temporal artery biopsy. Semin Arthritis Rheum. 2001;30:249–56. doi:10.1053/sarh.2001.16650.

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez-Gay MA, Garcia-Porrua C, Pineiro A, Pego-Reigosa R, Llorca J, Hunder GG. Aortic aneurysm and dissection in patients with biopsy-proven giant cell arteritis from northwestern Spain: a population-based study. Medicine (Baltimore). 2004;83:335–41.

    Article  Google Scholar 

  11. Bongartz T, Matteson EL. Large-vessel involvement in giant cell arteritis. Curr Opin Rheumatol. 2006;18:10–7.

    Article  PubMed  Google Scholar 

  12. Schmidt WA, Seifert A, Gromnica-Ihle E, Krause A, Natusch A. Ultrasound of proximal upper extremity arteries to increase the diagnostic yield in large-vessel giant cell arteritis. Rheumatology (Oxford). 2008;47:96–101. doi:10.1093/rheumatology/kem322.

    Article  CAS  Google Scholar 

  13. Agard C, Barrier JH, Dupas B, Ponge T, Mahr A, Fradet G, et al. Aortic involvement in recent-onset giant cell (temporal) arteritis: a case-control prospective study using helical aortic computed tomodensitometric scan. Arthritis Rheum. 2008;59:670–6. doi:10.1002/art.23577.

    Article  PubMed  Google Scholar 

  14. Brack A, Martinez-Taboada V, Stanson A, Goronzy JJ, Weyand CM. Disease pattern in cranial and large-vessel giant cell arteritis. Arthritis Rheum. 1999;42:311–7. doi:10.1002/1529-0131(199902)42:2<311::AID-ANR14>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  15. Calamia KT, Hunder GG. Giant cell arteritis (temporal arteritis) presenting as fever of undetermined origin. Arthritis Rheum. 1981;24:1414–8.

    Article  PubMed  CAS  Google Scholar 

  16. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  17. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49 Suppl 2:24S–42S. doi:10.2967/jnumed.107.047258.

    Article  PubMed  CAS  Google Scholar 

  18. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. doi:10.1126/science.1160809.

    Article  PubMed  CAS  Google Scholar 

  19. Blockmans D, Maes A, Stroobants S, Nuyts J, Bormans G, Knockaert D, et al. New arguments for a vasculitic nature of polymyalgia rheumatica using positron emission tomography. Rheumatology (Oxford). 1999;38:444–7.

    Article  CAS  Google Scholar 

  20. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [18F]FDG PET and MRI. Eur J Nucl Med Mol Imaging. 2003;30:730–6. doi:10.1007/s00259-003-1144-y.

    Article  PubMed  CAS  Google Scholar 

  21. Henes JC, Muller M, Krieger J, Balletshofer B, Pfannenberg AC, Kanz L, et al. [18F] FDG-PET/CT as a new and sensitive imaging method for the diagnosis of large vessel vasculitis. Clin Exp Rheumatol. 2008;26:S47–52.

    PubMed  CAS  Google Scholar 

  22. Lehmann P, Buchtala S, Achajew N, Haerle P, Ehrenstein B, Lighvani H, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis – a controlled, blinded re-examination of routine PET scans. Clin Rheumatol. 2011;30:37–42. doi:10.1007/s10067-010-1598-9.

    Article  PubMed  Google Scholar 

  23. Moosig F, Czech N, Mehl C, Henze E, Zeuner RA, Kneba M, et al. Correlation between 18-fluorodeoxyglucose accumulation in large vessels and serological markers of inflammation in polymyalgia rheumatica: a quantitative PET study. Ann Rheum Dis. 2004;63:870–3. doi:10.1136/ard.2003.011692.

    Article  PubMed  CAS  Google Scholar 

  24. Hautzel H, Sander O, Heinzel A, Schneider M, Muller HW. Assessment of large-vessel involvement in giant cell arteritis with 18F-FDG PET: introducing an ROC-analysis-based cutoff ratio. J Nucl Med. 2008;49:1107–13. doi:10.2967/jnumed.108.051920.

    Article  PubMed  Google Scholar 

  25. Besson FL, Parienti JJ, Bienvenu B, Prior JO, Costo S, Bouvard G, et al. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38:1764–72. doi:10.1007/s00259-011-1830-0.

    Article  PubMed  Google Scholar 

  26. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49:871–8. doi:10.2967/jnumed.107.050294.

    Article  PubMed  Google Scholar 

  27. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology. 2003;229:831–7. doi:10.1148/radiol.2293021168.

    Article  PubMed  Google Scholar 

  28. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  29. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  30. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med. 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  31. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45:1816–21.

    PubMed  Google Scholar 

  32. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46:1278–84.

    PubMed  Google Scholar 

  33. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008;35:562–9. doi:10.1007/s00259-007-0528-9.

    Article  PubMed  Google Scholar 

  34. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 2006;55:131–7. doi:10.1002/art.21699.

    Article  PubMed  Google Scholar 

  35. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108:246–9.

    Article  PubMed  CAS  Google Scholar 

  36. Lie JT. Aortic and extracranial large vessel giant cell arteritis: a review of 72 cases with histopathologic documentation. Semin Arthritis Rheum. 1995;24:422–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to Florent L. Besson.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(JPEG 156 kb)

High Resolution Image

(TIFF 5145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, F.L., de Boysson, H., Parienti, JJ. et al. Towards an optimal semiquantitative approach in giant cell arteritis: an 18F-FDG PET/CT case-control study. Eur J Nucl Med Mol Imaging 41, 155–166 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: