Skip to main content
Log in

Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The introduction of combined modality single photon emission computed tomography (SPECT)/CT cameras has revived interest in quantitative SPECT. Schemes to mitigate the deleterious effects of photon attenuation and scattering in SPECT imaging have been developed over the last 30 years but have been held back by lack of ready access to data concerning the density of the body and photon transport, which we see as key to producing quantitative data. With X-ray CT data now routinely available, validations of techniques to produce quantitative SPECT reconstructions have been undertaken. While still suffering from inferior spatial resolution and sensitivity compared to positron emission tomography (PET) imaging, SPECT scans nevertheless can be produced that are as quantitative as PET scans. Routine corrections are applied for photon attenuation and scattering, resolution recovery, instrumental dead time, radioactive decay and cross-calibration to produce SPECT images in units of kBq.ml−1. Though clinical applications of quantitative SPECT imaging are lacking due to the previous non-availability of accurately calibrated SPECT reconstructions, these are beginning to emerge as the community and industry focus on producing SPECT/CT systems that are intrinsically quantitative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 2012;53(8):1207–15. PubMed PMID: 22782315. Epub 2012/07/12. eng.

    Article  CAS  PubMed  Google Scholar 

  2. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;NS-25:638–43.

    Article  Google Scholar 

  3. Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28(5):844–51.

    CAS  PubMed  Google Scholar 

  4. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–22.

    Article  Google Scholar 

  5. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;MI-13(4):601–9.

    Article  Google Scholar 

  6. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998;25(7):774–87.

    Article  CAS  PubMed  Google Scholar 

  7. Moore SC. Attenuation compensation. In: Ell PJ, Holman BL, editors. Computed emission tomography. London: Oxford University Press; 1982. p. 339–60.

    Google Scholar 

  8. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.

    Article  CAS  PubMed  Google Scholar 

  9. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994;41(6):2793–9.

    Article  Google Scholar 

  10. Brown S, Bailey DL, Willowson K, Baldock CA. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.

    Article  CAS  PubMed  Google Scholar 

  11. Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging 2007;34(9):1415–26. PubMed PMID: 17372731. Epub 2007/03/21. eng.

    Article  PubMed  Google Scholar 

  12. Beyer T, Kinahan PE, Townsend DW, Sashin D, editors. The use of X-ray CT for attenuation correction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference. Norfolk: Institute of Electrical and Electronics Engineers; 1994.

  13. Blankespoor S, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43(4):2263–74.

    Article  Google Scholar 

  14. Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50(5):1510–5.

    Article  Google Scholar 

  15. Larsson A, Johansson L, Sundström T, Riklund-Ahlström K. A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Commun 2003;24:411–20.

    Article  CAS  PubMed  Google Scholar 

  16. Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997;42(8):1619–32. PubMed PMID: 9279910. Epub 1997/08/01. eng.

    Article  CAS  PubMed  Google Scholar 

  17. Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43(4):857–73. PubMed PMID: 9572510. Pubmed Central PMCID: 2808130. Epub 1998/05/08. eng.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Buvat I, Rodrigues-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476–88.

    CAS  PubMed  Google Scholar 

  19. El Fakhri G, Buvat I, Benali H, Todd-Pokropek AE, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41(8):1400–8.

    PubMed  Google Scholar 

  20. Jaszczak RJ, Greer KL, Floyd CE, Harris CG, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900.

    CAS  PubMed  Google Scholar 

  21. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34(12):2216–21. PubMed PMID: 8254414. Epub 1993/12/01. eng.

    CAS  PubMed  Google Scholar 

  22. Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.

    Article  PubMed  Google Scholar 

  23. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994;35(2):360–7.

    CAS  PubMed  Google Scholar 

  24. Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25:490–4.

    CAS  PubMed  Google Scholar 

  25. Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28:1861–9.

    CAS  PubMed  Google Scholar 

  26. Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1993;38:1359–70.

    Article  Google Scholar 

  27. Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44(4):512–9.

    PubMed  Google Scholar 

  28. Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996;41:2481–96.

    Article  CAS  PubMed  Google Scholar 

  29. Bailey DL, Hutton BF, Meikle SR. Development of an iterative scatter correction technique for SPECT. Aust N Z J Med 1988;18:501. Abstract.

    Google Scholar 

  30. Ljungberg M, Strand S-E. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 1991;32:1278–84.

    CAS  PubMed  Google Scholar 

  31. Mukai T, Links JM, Douglass KH, Wagner Jr HN. Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 1988;33(10):1129–40.

    Article  CAS  PubMed  Google Scholar 

  32. Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500.

    CAS  PubMed  Google Scholar 

  33. Siegel JA, Maurer AH, Wu RK, Blasius KM, Denenberg BS, Gash AK, et al. Absolute left ventricular volume by an iterative build-up factor analysis of gated radionuclide images. Radiology 1984;151:477–81.

    CAS  PubMed  Google Scholar 

  34. Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998;39(1):181–9.

    CAS  PubMed  Google Scholar 

  35. Kim KM, Watabe H, Shidahara M, Ishida Y, Iida H. SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies. IEEE Trans Nucl Sci 2001;NS-48(June):689–96.

    Google Scholar 

  36. Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003;48(21):N323–8.

    Article  PubMed  Google Scholar 

  37. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 2011;11:56–66. PubMed PMID: 21684829. Pubmed Central PMCID: 3205754. Epub 2011/06/21. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Cranley K, Millar R, Bell T. Correction for deadtime losses in a gamma camera/data analysis system. Eur J Nucl Med 1980;5:377–82.

    Article  CAS  PubMed  Google Scholar 

  39. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010;51(6):921–8. PubMed PMID: 20484423.

    Article  PubMed  Google Scholar 

  40. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  42. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54(1):83–9.

    Article  PubMed  Google Scholar 

  43. Willowson K, Bailey DL, Bailey EA, Baldock C, Roach PJ. In vivo validation of quantitative SPECT in the heart. Clin Physiol Funct Imaging 2010;30(3):214–9.

    Article  PubMed  Google Scholar 

  44. Iida H, Nakagawara J, Hayashida K, Fukushima K, Watabe H, Koshino K, et al. Multicenter evaluation of a standardized protocol for rest and acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med 2010;51(10):1624–31. PubMed PMID: 20847163. Epub 2010/09/18. eng.

    Article  PubMed  Google Scholar 

  45. Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013;3(1):45. PubMed PMID: 23738809. Pubmed Central PMCID: 3680030.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 2008;53(17):4595–604. PubMed PMID: 18678930. Epub 2008/08/06. eng.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale L. Bailey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, D.L., Willowson, K.P. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 41 (Suppl 1), 17–25 (2014). https://doi.org/10.1007/s00259-013-2542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2542-4

Keywords

Navigation