Skip to main content


Log in

Predictive value of pre-therapy 18F-FDG PET/CT for the outcome of 18F-FDG PET-guided radiotherapy in patients with head and neck cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript



The aim of this study was to evaluate the predictive role of pre-therapy fluorodeoxyglucose (FDG) uptake parameters of primary tumour in head and neck cancer (HNC) patients undergoing intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost (SIB) on FDG-positive volume—positron emission tomography (PET) gross tumour volume (PET-GTV).


This retrospective study included 19 patients (15 men and 4 women, mean age 59.2 years, range 23–81 years) diagnosed with HNC between 2005 and 2011. Of 19 patients, 15 (79 %) had stage III–IV. All patients underwent FDG PET/CT before treatment. Metabolic indexes of primary tumour, including metabolic tumour volume (MTV), maximum and mean standardized uptake value (SUVmax, SUVmean) and total lesion glycolysis (TLG) were considered. Partial volume effect correction (PVC) was performed for SUVmean and TLG estimation. Correlations between PET/CT parameters and 2-year disease-free survival (DFS), local recurrence-free survival (LRFS) and distant metastasis-free survival (DMFS) were assessed. Median patient follow-up was 19.2 months (range 4–24 months).


MTV, TLG and PVC-TLG predicting patients’ outcome with respect to all the considered local and distant disease control endpoints (LRFS, DMFS and DFS) were 32.4 cc, 469.8 g and 547.3 g, respectively. SUVmean and PVC-SUVmean cut-off values predictive of LRFS and DFS were 10.8 and 13.3, respectively. PVC was able to compensate errors up to 25 % in the primary HNC tumour uptake. Moreover, PVC enhanced the statistical significance of the results.


FDG PET/CT uptake parameters are predictors of patients’ outcome and can potentially identify patients with higher risk of treatment failure that could benefit from more aggressive approaches. Application of PVC is recommended for accurate measurement of PET parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Licitra L, Locati LD, Bossi P. Head and neck cancer. Ann Oncol 2004;15 Suppl 4:iv267–73. doi:10.1093/annonc/mdh937.

    PubMed  Google Scholar 

  3. Peponi E, Glanzmann C, Kunz G, Renner C, Tomuschat K, Studer G. Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer. Strahlenther Onkol 2010;186:135–42. doi:10.1007/s00066-010-2048-y.

    Article  PubMed  Google Scholar 

  4. Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys 2004;60:1419–24. doi:10.1016/j.ijrobp.2004.05.037.

    Article  PubMed  Google Scholar 

  5. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.

    PubMed  Google Scholar 

  6. Du XL, Jiang T, Sheng XG, Li QS, Wang C, Yu H. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer. Eur J Radiol 2012;81:3551–6. doi:10.1016/j.ejrad.2012.03.016.

    Article  PubMed  Google Scholar 

  7. Nguyen NP, Chi A, Betz M, Almeida F, Vos P, Davis R, et al. Feasibility of intensity-modulated and image-guided radiotherapy for functional organ preservation in locally advanced laryngeal cancer. PLoS One 2012;7:e42729. doi:10.1371/journal.pone.0042729.

    Article  PubMed  CAS  Google Scholar 

  8. Duet M, Hugonnet F, Faraggi M. Role of positron emission tomography (PET) in head and neck cancer. Eur Ann Otorhinolaryngol Head Neck Dis 2010;127:40–5. doi:10.1016/j.anorl.2010.02.010.

    Article  PubMed  CAS  Google Scholar 

  9. Mak D, Corry J, Lau E, Rischin D, Hicks RJ. Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 2011;55:487–99.

    PubMed  CAS  Google Scholar 

  10. Murakami R, Uozumi H, Hirai T, Nishimura R, Shiraishi S, Ota K, et al. Impact of FDG-PET/CT imaging on nodal staging for head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2007;68:377–82. doi:10.1016/j.ijrobp.2006.12.032.

    Article  PubMed  Google Scholar 

  11. Zanation AM, Sutton DK, Couch ME, Weissler MC, Shockley WW, Shores CG. Use, accuracy, and implications for patient management of [18F]-2-fluorodeoxyglucose-positron emission/computerized tomography for head and neck tumors. Laryngoscope 2005;115:1186–90. doi:10.1097/01.MLG.0000163763.89647.9F.

    Article  PubMed  Google Scholar 

  12. Abgral R, Querellou S, Potard G, Le Roux PY, Le Duc-Pennec A, Marianovski R, et al. Does 18F-FDG PET/CT improve the detection of posttreatment recurrence of head and neck squamous cell carcinoma in patients negative for disease on clinical follow-up? J Nucl Med 2009;50:24–9. doi:10.2967/jnumed.108.055806.

    Article  PubMed  Google Scholar 

  13. Ong SC, Schöder H, Lee NY, Patel SG, Carlson D, Fury M, et al. Clinical utility of 18F-FDG PET/CT in assessing the neck after concurrent chemoradiotherapy for locoregional advanced head and neck cancer. J Nucl Med 2008;49:532–40. doi:10.2967/jnumed.107.044792.

    Article  PubMed  Google Scholar 

  14. Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M. FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 2002;86:512–6. doi:10.1038/sj.bjc.6600114.

    Article  PubMed  CAS  Google Scholar 

  15. Moon SH, Choi JY, Lee HJ, Son YI, Baek CH, Ahn YC, et al. Prognostic value of 18F-FDG PET/CT in patients with squamous cell carcinoma of the tonsil: comparisons of volume-based metabolic parameters. Head Neck 2013;35:15–22. doi:10.1002/hed.22904.

    Article  PubMed  Google Scholar 

  16. Schinagl DA, Span PN, Oyen WJ, Kaanders JH. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging 2011;38:1449–58. doi:10.1007/s00259-011-1789-x.

    Article  PubMed  Google Scholar 

  17. Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, Chung JS, et al. Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemo-radiation therapy. Acta Oncol 2010;49:201–8. doi:10.3109/02841860903440270.

    Article  PubMed  CAS  Google Scholar 

  18. Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radiother Oncol 2008;89:13–8. doi:10.1016/j.radonc.2008.05.021.

    Article  PubMed  Google Scholar 

  19. Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 2006;80:151–6. doi:10.1016/j.radonc.2006.07.033.

    Article  PubMed  CAS  Google Scholar 

  20. Hatt M, Le Pogam A, Visvikis D, Pradier O, Cheze Le Rest C. Impact of partial-volume effect correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal cancer. J Nucl Med 2012;53:12–20.

    Article  PubMed  CAS  Google Scholar 

  21. van Heijl M, Omloo JM, van Berge Henegouwen MI, van Lanschot JJ, Sloof GW, Boellaard R. Influence of ROI definition, partial volume correction and SUV normalization on SUV-survival correlation in oesophageal cancer. Nucl Med Commun 2010;31:652–8.

    PubMed  Google Scholar 

  22. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45. doi:10.2967/jnumed.106.035774.

    Article  PubMed  Google Scholar 

  23. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010;17:1471–4. doi:10.1245/s10434-010-0985-4.

    Article  PubMed  Google Scholar 

  24. Bettinardi V, Mancosu P, Danna M, Giovacchini G, Landoni C, Picchio M, et al. Two-dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a Discovery-STE phantom and patient study. Q J Nucl Med Mol Imaging 2007;51:214–23.

    PubMed  CAS  Google Scholar 

  25. Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010;96:302–7. doi:10.1016/j.radonc.2010.07.003.

    Article  PubMed  Google Scholar 

  26. Gallivanone F, Grosso E, Canevari C, Gianolli L, Messa C, Gilardi MC, et al. PVE correction in PET-CT whole-body oncological studies from PVE-affected images. IEEE Trans Nucl Sci 2011;58:736–47. doi:10.1109/TNS.2011.2108316.

    Article  Google Scholar 

  27. Kubicek GJ, Champ C, Fogh S, Wang F, Reddy E, Intenzo C, et al. FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head Neck Oncol 2010;2:19. doi:10.1186/1758-3284-2-19.

    Article  PubMed  Google Scholar 

  28. La TH, Filion EJ, Turnbull BB, Chu JN, Lee P, Nguyen K, et al. Metabolic tumor volume predicts for recurrence and death in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2009;74:1335–41. doi:10.1016/j.ijrobp.2008.10.060.

    Article  PubMed  Google Scholar 

  29. Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 2008;70:678–84. doi:10.1016/j.ijrobp.2007.10.044.

    Article  PubMed  Google Scholar 

  30. Romesser PB, Qureshi MM, Subramaniam RM, Sakai O, Jalisi S, Truong MT. A prognostic volumetric threshold of gross tumor volume in head and neck cancer patients treated with radiotherapy. Am J Clin Oncol 2012. doi:10.1097/COC.0b013e31826e04d6.

    PubMed  Google Scholar 

  31. Strongin A, Yovino S, Taylor R, Wolf J, Cullen K, Zimrin A, et al. Primary tumor volume is an important predictor of clinical outcomes among patients with locally advanced squamous cell cancer of the head and neck treated with definitive chemoradiotherapy. Int J Radiat Oncol Biol Phys 2012;82:1823–30. doi:10.1016/j.ijrobp.2010.10.053.

    Article  PubMed  Google Scholar 

  32. Romesser PB, Qureshi MM, Shah BA, Chatburn LT, Jalisi S, Devaiah AK, et al. Superior prognostic utility of gross and metabolic tumor volume compared to standardized uptake value using PET/CT in head and neck squamous cell carcinoma patients treated with intensity-modulated radiotherapy. Ann Nucl Med 2012;26:527–34. doi:10.1007/s12149-012-0604-5.

    Article  PubMed  Google Scholar 

  33. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.

    Article  PubMed  Google Scholar 

  34. Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H. [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 2006;79:249–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest


Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Picchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picchio, M., Kirienko, M., Mapelli, P. et al. Predictive value of pre-therapy 18F-FDG PET/CT for the outcome of 18F-FDG PET-guided radiotherapy in patients with head and neck cancer . Eur J Nucl Med Mol Imaging 41, 21–31 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: