Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma

  • Mathieu Hatt
  • Florent Tixier
  • Catherine Cheze Le Rest
  • Olivier Pradier
  • Dimitris Visvikis
Original Article

Abstract

Purpose

Intratumour uptake heterogeneity in PET quantified in terms of textural features for response to therapy has been investigated in several studies, including assessment of their robustness for reconstruction and physiological reproducibility. However, there has been no thorough assessment of the potential impact of preprocessing steps on the resulting quantification and its predictive value. The goal of this work was to assess the robustness of PET heterogeneity in textural features for delineation of functional volumes and partial volume correction (PVC).

Methods

This retrospective analysis included 50 patients with oesophageal cancer. PVC of each PET image was performed. Tumour volumes were determined using fixed and adaptive thresholding, and the fuzzy locally adaptive Bayesian algorithm, and heterogeneity was quantified using local and regional textural features. Differences in the absolute values of the image-derived parameters considered were assessed using Bland-Altman analysis. The impact on their predictive value for the identification of patient nonresponders was assessed by comparing areas under the receiver operating characteristic curves.

Results

Heterogeneity parameters were more dependent on delineation than on PVC. The parameters most sensitive to delineation and PVC were regional ones (intensity variability and size zone variability), whereas local parameters such as entropy and homogeneity were the most robust. Despite the large differences in absolute values obtained from different delineation methods or after PVC, these differences did not necessarily translate into a significant impact on their predictive value.

Conclusion

Parameters such as entropy, homogeneity, dissimilarity (for local heterogeneity characterization) and zone percentage (for regional characterization) should be preferred. This selection is based on a demonstrated high differentiation power in terms of predicting response, as well as a significant robustness with respect to the delineation method used and the partial volume effects.

Keywords

FDG PET/CT Heterogeneity Textural features Tumour delineation Partial volume effect correction Response to therapy prediction 

References

  1. 1.
    Krause BJ, Schwarzenbock S, Souvatzoglou M. FDG PET and PET/CT. Recent Results Cancer Res. 2013;187:351–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Jarritt PH, Carson KJ, Hounsell AR, Visvikis D. The role of PET/CT scanning in radiotherapy planning. Br J Radiol. 2006;79(Spec No 1):S27–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Herrmann K, Benz MR, Krause BJ, Pomykala KL, Buck AK, Czernin J. (18)F-FDG-PET/CT in evaluating response to therapy in solid tumors: where we are and where we can go. Q J Nucl Med Mol Imaging. 2011;55:620–32.PubMedGoogle Scholar
  4. 4.
    Liao S, Penney BC, Wroblewski K, Zhang H, Simon CA, Kampalath R, et al. Prognostic value of metabolic tumor burden on 18F-FDG PET in nonsurgical patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2012;39:27–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Hatt M, Visvikis D, Pradier O, Cheze-le Rest C. Baseline (18)F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2011;38:1595–606.PubMedCrossRefGoogle Scholar
  6. 6.
    Deron P, Mertens K, Goethals I, Rottey S, Duprez F, De Neve W, et al. Metabolic tumour volume. Prognostic value in locally advanced squamous cell carcinoma of the head and neck. Nuklearmedizin. 2011;50:141–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Melton GB, Lavely WC, Jacene HA, Schulick RD, Choti MA, Wahl RL, et al. Efficacy of preoperative combined 18-fluorodeoxyglucose positron emission tomography and computed tomography for assessing primary rectal cancer response to neoadjuvant therapy. J Gastrointest Surg. 2007;11:961–9. discussion 969.PubMedCrossRefGoogle Scholar
  8. 8.
    Hatt M, Groheux D, Martineau A, Espie M, Hindie E, Giacchetti S, et al. Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer. J Nucl Med. 2013;54:341–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Lee HY, Hyun SH, Lee KS, Kim BT, Kim J, Shim YM, et al. Volume-based parameter of 18F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol. 2010;17:2787–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Cazaentre T, Morschhauser F, Vermandel M, Betrouni N, Prangere T, Steinling M, et al. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:494–504.PubMedCrossRefGoogle Scholar
  11. 11.
    Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 2011;38:987–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Visvikis D, Hatt M, Tixier F, Cheze Le Rest C. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging. 2012;39:1670–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout R G, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.Google Scholar
  14. 14.
    Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89.PubMedCrossRefGoogle Scholar
  16. 16.
    Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.PubMedCrossRefGoogle Scholar
  17. 17.
    O’Sullivan F, Wolsztynski E, O’Sullivan J, Richards T, Conrad E, Eary J. A statistical modeling approach to the analysis of spatial patterns of FDG-PET uptake in human sarcoma. IEEE Trans Med Imaging. 2011;30:2059–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.PubMedCrossRefGoogle Scholar
  19. 19.
    Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, et al. Spatial-temporal [(18)F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1375–82.PubMedCrossRefGoogle Scholar
  20. 20.
    El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller TR, Pinkus E, Dehdashti F, Grigsby PW. Improved prognostic value of 18F-FDG PET using a simple visual analysis of tumor characteristics in patients with cervical cancer. J Nucl Med. 2003;44:192–7.PubMedGoogle Scholar
  22. 22.
    van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49:1012–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Tixier F, Hatt M, Cheze Le Rest C, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET imaging. J Nucl Med. 2012;53:693–700.PubMedCrossRefGoogle Scholar
  25. 25.
    Visvikis D, Turzo A, Gouret A, Damine P, Lamare F, Bizais Y, et al. Characterisation of SUV accuracy in FDG PET using 3-D RAMLA and the Philips Allegro PET scanner. J Nucl Med. 2004;45:103.Google Scholar
  26. 26.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80:2505–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.PubMedGoogle Scholar
  29. 29.
    Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28:881–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Hatt M, Cheze Le Rest C, Albarghach N, Pradier O, Visvikis D. PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging. 2011;38:663–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, et al. Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements. J Nucl Med. 2010;51:1368–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Boussion N, Cheze Le Rest C, Hatt M, Visvikis D. Incorporation of wavelet-based denoising in iterative deconvolution for partial volume correction in whole-body PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:1064–75.PubMedCrossRefGoogle Scholar
  34. 34.
    DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mathieu Hatt
    • 1
  • Florent Tixier
    • 1
  • Catherine Cheze Le Rest
    • 2
  • Olivier Pradier
    • 3
  • Dimitris Visvikis
    • 1
  1. 1.INSERM, UMR 1101, LaTIMCHRU MorvanBrestFrance
  2. 2.Nuclear MedicineCHU MilétriePoitiersFrance
  3. 3.RadiotherapyCHRU MorvanBrestFrance

Personalised recommendations