Skip to main content
Log in

Effect of emaciation and obesity on small-animal internal radiation dosimetry for positron-emitting radionuclides

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Rats are widely used in biomedical research involving molecular imaging and therefore the radiation dose to animals has become a concern. The weight of laboratory animals might change through emaciation or obesity as a result of their use in various research experiments including those investigating different diet types. In this work, we evaluated the effects of changes in body weight induced by emaciation and obesity on the internal radiation dose from common positron-emitting radionuclides.

Methods

A systematic literature review was performed to determine normal anatomical parameters for adult rats and evaluate how organs change with variations in total body weight. The ROBY rat anatomical model was then modified to produce a normal adult rat, and mildly, moderately and severely emaciated and obese rats. Monte Carlo simulations were performed using MCNPX to estimate absorbed fractions, specific absorbed fractions (SAFs) and S-values for these models using different positron-emitting radionuclides. The results obtained for the different models were compared to corresponding estimates from the normal rat model.

Results

The SAFs and S-values for most source–target pairs between the various anatomical models were not significantly different, except where the intestine and the total body were considered as source regions. For the intestine, irradiating other organs in the obese model, the SAFs in organs in the anterior region of the splanchnocoele (e.g. kidney, liver and stomach) increased slightly, whereas the SAFs in organs in the posterior region of the splanchnocoele (e.g. bladder and testes) decreased owing to the increase in the distance separating the intestine and posterior abdominal organs because of the rat epididymal fat pad. For the total body, irradiating other organs, the SAFs and S-values were inversely related to body weight.

Conclusion

The effect of obesity on internal radiation dose is insignificant in most conditions for common positron-emitting radionuclides. Emaciation increases the cross-absorbed dose to organs from surrounding tissues, which might be a notable issue in laboratory animal internal dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jönsson BA, Strand SE, Larsson BS. A quantitative autoradiographic study of the heterogeneous activity distribution of different indium-111-labeled radiopharmaceuticals in rat tissues. J Nucl Med. 1992;33(10):1825–33.

    PubMed  Google Scholar 

  2. Pasqualini R, Duatti A, Bellande E, Comazzi V, Brucato V, Hoffschir D, et al. Bis(dithiocarbamato)nitrido technetium-99m radiopharmaceuticals: a class of neutral myocardial imaging agents. J Nucl Med. 1994;35(2):334–41.

    PubMed  CAS  Google Scholar 

  3. Zaidi H, Xu XG. Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in medical imaging. Annu Rev Biomed Eng. 2007;9(1):471–500.

    Article  PubMed  CAS  Google Scholar 

  4. Lee C, Lodwick D, Hasenauer D, Williams JL, Bolch WE. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models. Phys Med Biol. 2007;52(12):3309–33.

    Article  PubMed  Google Scholar 

  5. Hui TE, Fisher DR, Kuhn JA, Williams LE, Nourigat C, Badger CC, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer. 1994;73(3 Suppl):951–7.

    PubMed  CAS  Google Scholar 

  6. Konijnenberg MW, Bijster M, Krenning EP, De Jong M. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with 90Y, 111In, or 177Lu. J Nucl Med. 2004;45(7):1260–9.

    PubMed  CAS  Google Scholar 

  7. Xie T, Zhang G, Li Y, Liu Q. Comparison of absorbed fractions of electrons and photons using three kinds of computational phantoms of rat. Appl Phys Lett. 2010;97(3):33702–4.

    Article  Google Scholar 

  8. Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH. A mouse model for calculating the absorbed beta-particle dose from 131I- and 90Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res. 2001;156(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  9. Miller WH, Hartmann-Siantar C, Fisher D, Descalle MA, Daly T, Lehmann J, et al. Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides. Cancer Biother Radiopharm. 2005;20(4):436–49.

    Article  PubMed  CAS  Google Scholar 

  10. Hindorf C, Ljungberg M, Strand SE. Evaluation of parameters influencing S values in mouse dosimetry. J Nucl Med. 2004;45(11):1960–5.

    PubMed  CAS  Google Scholar 

  11. Stabin MG, Peterson TE, Holburn GE, Emmons MA. Voxel-based mouse and rat models for internal dose calculations. J Nucl Med. 2006;47(4):655–9.

    PubMed  Google Scholar 

  12. Kolbert KS, Watson T, Matei C, Xu S, Koutcher JA, Sgouros G. Murine S factors for liver, spleen, and kidney. J Nucl Med. 2003;44(5):784–91.

    PubMed  CAS  Google Scholar 

  13. Bitar A, Lisbona A, Thedrez P, Sai Maurel C, Le Forestier D, Barbet J, et al. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Phys Med Biol. 2007;52(4):1013–25.

    Article  PubMed  CAS  Google Scholar 

  14. Dogdas B, Stout D, Chatziioannou AF, Leahy RM. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol. 2007;52(3):577–87.

    Article  PubMed  Google Scholar 

  15. Mohammadi A, Kinase S. Monte Carlo simulations of photon specific absorbed fractions in a mouse voxel pPhantom. Prog Nucl Sci Technol. 2011;1:126–9.

    Google Scholar 

  16. Zhang X, Xie X, Cheng J, Ning J, Yuan Y, Pan J, et al. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation. Radiat Prot Dosim. 2012;148(1):9–19.

    Article  CAS  Google Scholar 

  17. Peixoto PH, Vieira JW, Yoriyaz H, Lima FR. Photon and electron absorbed fractions calculated from a new tomographic rat model. Phys Med Biol. 2008;53(19):5343–55.

    Article  PubMed  CAS  Google Scholar 

  18. Wu L, Zhang G, Luo Q, Liu Q. An image-based rat model for Monte Carlo organ dose calculations. Med Phys. 2008;35(8):3759–64.

    Article  PubMed  Google Scholar 

  19. Xie T, Liu Q, Zaidi H. Evaluation of S-values and dose distributions for 90Y, 131I, 166Ho, and 188Re in seven lobes of the rat liver. Med Phys. 2012;39(3):1462–72.

    Article  PubMed  CAS  Google Scholar 

  20. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6(3):149–59.

    Article  PubMed  Google Scholar 

  21. Keenan MA, Stabin MG, Segars WP, Fernald MJ. RADAR realistic animal model series for dose assessment. J Nucl Med. 2010;51(3):471–6.

    Article  PubMed  Google Scholar 

  22. Xie T, Zaidi H. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides. Phys Med Biol. 2013;58(1):169–82.

    Article  PubMed  CAS  Google Scholar 

  23. Coop KL, Sharp JG, Osborne JW, Zimmerman GR. An animal model for the study of small-bowel tumors. Cancer Res. 1974;34(6):1487–94.

    PubMed  CAS  Google Scholar 

  24. Nagler R. Extended-term effects of head and neck irradiation in a rodent. Eur J Cancer. 2001;37(15):1938–45.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas R, Thomas RL, Wright S. Retention of cesium-137 and strontium-90 administered in lethal doses to rats. Am Ind Hyg Assoc J. 1968;29(6):593–600.

    Article  PubMed  CAS  Google Scholar 

  26. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, et al. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI workshop, December 3-4, 2003. Radiat Res. 2004;162(6):711–28.

    Article  PubMed  CAS  Google Scholar 

  27. Larsson E, Ljungberg M, Mårtensson L, Nilsson R, Tennvall J, Strand SE, et al. Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with 177Lu- and 90Y-BR96 mAbs. Med Phys. 2012;39(7):4434–43.

    Article  PubMed  CAS  Google Scholar 

  28. Kennedy G. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953;140(901):578–92.

    Article  PubMed  CAS  Google Scholar 

  29. Pass D, Freeth G. The rat. ANZCCART News. 1993;6(4):1–4.

    Google Scholar 

  30. Donaldson HH. The rat: data and reference tables for the albino rat and the Norway rat. New Delhi: Nabu Press; 1915.

    Google Scholar 

  31. Bardia A, Holtan SG, Slezak JM, Thompson WG. Diagnosis of obesity by primary care physicians and impact on obesity management. Mayo Clin Proc. 2007;82:927–32.

    Article  PubMed  Google Scholar 

  32. Kostanski M, Gullone E. Adolescent body image dissatisfaction: relationships with self-esteem, anxiety, and depression controlling for body mass. J Child Psychol Psychiatry. 1998;39(2):255–62.

    Article  PubMed  CAS  Google Scholar 

  33. Hashimoto PH, Goami Y, Yoneda K, Mori K, Shioyama M, Hasegawa E, et al. Fine structure of rat liver, adrenal, testis and seminal vesicle in experimental emaciation. J Electron Microsc. 1998;47(3):251–62.

    Article  CAS  Google Scholar 

  34. Ochi M, Yoshioka H, Sawada T, Kusunoki T, Hattori T. New adipocyte formation in mice during refeeding after long-term deprivation. Am J Physiol. 1991;260(3):R468–74.

    PubMed  CAS  Google Scholar 

  35. Reed LL, Anderson WE, Mendel LB. Factors Influencing the distribution and character of adipose tissue in the rat. J Biol Chem. 1932;96(2):313–23.

    CAS  Google Scholar 

  36. Jeanrenaud B, Renold AE. Studies on rat adipose tissue in vitro. J Biol Chem. 1960;235(8):2217–23.

    PubMed  CAS  Google Scholar 

  37. Pelowitz DB. MCNPX user’s manual version 2.5.0. Los Alamos, NM: Los Alamos National Laboratory; 2005. LA-CP-05-0369.

  38. Goldstone KE. Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44. Vol 41. International Commission on Radiation Units and Measurements; 1990.

  39. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values – ICRP publication 89. Ann ICRP. 2002;32(3-4):5–265.

    Article  Google Scholar 

  40. Xie T, Han D, Liu Y, Sun J, Liu Q. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons. Med Phys. 2010;37(5):2167–78.

    Article  PubMed  CAS  Google Scholar 

  41. Myers R. The biological application of small animal PET imaging. Nucl Med Biol. 2001;28(5):585–93.

    Article  PubMed  CAS  Google Scholar 

  42. Shimoji K, Ravasi L, Schmidt K, Soto-Montenegro ML, Esaki T, Seidel J, et al. Measurement of cerebral glucose metabolic rates in the anesthetized rat by dynamic scanning with 18F-FDG, the ATLAS small animal PET scanner, and arterial blood sampling. J Nucl Med. 2004;45(4):665–72.

    PubMed  CAS  Google Scholar 

  43. Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med. 2006;47(3):477–85.

    PubMed  CAS  Google Scholar 

  44. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.

    Article  PubMed  CAS  Google Scholar 

  45. Snyder WS, Ford MR, Warner GG, Watson SB. MIRD pamphlet no. 11: ‘S’, absorbed dose per unit cumulated activity for selected radionuclides and organs. New York: The Society of Nuclear Medicine; 1975.

    Google Scholar 

  46. Health Physics Society. Radionuclide decay data. McLean, VA: Health Physics Society. http://hps.org/publicinformation/radardecaydata.cfm. Accessed 21 Jun 2013.

  47. Bardies M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres. Phys Med Biol. 1994;39(6):961–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grant SNSF 31003A-125246, the Geneva Cancer League and the Indo-Swiss Joint Research Programme ISJRP 138866. The authors thank Dr. W. Paul Segars for providing the ROBY computational rat model.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, T., Zaidi, H. Effect of emaciation and obesity on small-animal internal radiation dosimetry for positron-emitting radionuclides. Eur J Nucl Med Mol Imaging 40, 1748–1759 (2013). https://doi.org/10.1007/s00259-013-2485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2485-9

Keywords

Navigation