Skip to main content

Advertisement

Log in

Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the performance of conventional [11C]choline PET/CT in comparison to that of simultaneous whole-body PET/MR.

Methods

The study population comprised 32 patients with prostate cancer who underwent a single-injection dual-imaging protocol with PET/CT and subsequent PET/MR. PET/CT scans were performed applying standard clinical protocols (5 min after injection of 793 ± 69 MBq [11C]choline, 3 min per bed position, intravenous contrast agent). Subsequently (52 ± 15 min after injection) PET/MR was performed (4 min per bed position). PET images were reconstructed iteratively (OSEM 3D), scatter and attenuation correction of emission data and regional allocation of [11C]choline foci were performed using CT data for PET/CT and segmented Dixon MR, T1 and T2 sequences for PET/MR. Image quality of the respective PET scans and PET alignment with the respective morphological imaging modality were compared using a four point scale (0–3). Furthermore, number, location and conspicuity of the detected lesions were evaluated. SUVs for suspicious lesions, lung, liver, spleen, vertebral bone and muscle were compared.

Results

Overall 80 lesions were scored visually in 29 of the 32 patients. There was no significant difference between the two PET scans concerning number or conspicuity of the detected lesions (p not significant). PET/MR with T1 and T2 sequences performed better than PET/CT in anatomical allocation of lesions (2.87 ± 0.3 vs. 2.72 ± 0.5; p = 0.005). The quality of PET/CT images (2.97 ± 0.2) was better than that of the respective PET scan of the PET/MR (2.69 ± 0.5; p = 0.007). Overall the maximum and mean lesional SUVs exhibited high correlations between PET/CT and PET/MR (ρ = 0.87 and ρ = 0.86, respectively; both p < 0.001).

Conclusion

Despite a substantially later imaging time-point, the performance of simultaneous PET/MR was comparable to that of PET/CT in detecting lesions with increased [11C]choline uptake in patients with prostate cancer. Anatomical allocation of lesions was better with simultaneous PET/MR than with PET/CT, especially in the bone and pelvis. These promising findings suggest that [11C]choline PET/MR might have a diagnostic benefit compared to PET/CT in patients with prostate cancer, and now needs to be further evaluated in prospective trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol. 2008;5(3):160–70.

    Article  PubMed  CAS  Google Scholar 

  2. Schöder H, Carlson DL, Kraus DH, Stambuk HE, Gönen M, Erdi YE, et al. 18F-FDG PET/CT for detecting nodal metastases in patients with oral cancer staged N0 by clinical examination and CT/MRI. Nucl Med. 2006;47(5):755–62.

    Google Scholar 

  3. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348(25):2500–7.

    Article  PubMed  Google Scholar 

  4. Tatsumi M, Cohade C, Mourtzikos KA, Fishman EK, Wahl RL. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur J Nucl Med Mol Imaging. 2006;33(3):254–62.

    Article  PubMed  Google Scholar 

  5. Freudenberg LS, Antoch G, Schütt P, Beyer T, Jentzen W, Müller SP, et al. FDG-PET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging. 2004;31(3):325–9.

    Article  PubMed  CAS  Google Scholar 

  6. Czernin J, Allen-Auerbach M, Schelbert HR. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med. 2007;48 Suppl 1:78S–88S.

    PubMed  CAS  Google Scholar 

  7. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  8. Tuncel M, Souvatzoglou M, Herrmann K, Stollfuss J, Schuster T, Weirich G, et al. [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol. 2008;35(6):689–95.

    Article  PubMed  CAS  Google Scholar 

  9. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243(1):28–53.

    Article  PubMed  Google Scholar 

  10. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    Article  PubMed  Google Scholar 

  11. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12(2):181–91.

    Article  PubMed  Google Scholar 

  12. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S113–20.

    Article  PubMed  Google Scholar 

  13. Schlemmer HP, Pichler BJ, Krieg R, Heiss WD. An integrated MR/PET system: prospective applications. Abdom Imaging. 2009;34:668–74.

    Article  PubMed  Google Scholar 

  14. Ziegler S, Delso G. Technical and methodological aspects of PET/MR. Clin Transl Imaging. 2013;1:11–6. doi:10.1007/s40336-013-0011-5.

    Article  Google Scholar 

  15. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  16. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med. 2012;53(6):845–55.

    Article  PubMed  Google Scholar 

  17. Pascali C, Bogni A, Itawa R, Cambiè M, Bombardieri E. [11C]Methylation on a C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C]. Choline. 2000;43:195–203.

    CAS  Google Scholar 

  18. Jakoby BW, Bercier Y, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci. 2009;56:633–9.

    Article  Google Scholar 

  19. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25(10):2046–53.

    Article  PubMed  CAS  Google Scholar 

  20. Eiber M, Martinez-Moller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38:1691–701.

    Article  PubMed  Google Scholar 

  21. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med. 2003;44(3):331–5.

    PubMed  Google Scholar 

  22. Wyss MT, Weber B, Honer M, Späth N, Ametamey SM, Westera G, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging. 2004;31(3):312–6.

    Article  PubMed  CAS  Google Scholar 

  23. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47(2):262–9.

    PubMed  Google Scholar 

  24. Steiner C, Vees H, Zaidi H, Wissmeyer M, Berrebi O, Kossovsky MP, et al. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nuklearmedizin. 2009;48(1):1–9.

    PubMed  Google Scholar 

  25. Peng ZM, Liu Q, Liu QW, Yao SZ, Meng L, Liu Q, et al. The value of dual time point 11C-choline PET-CT in differentiating malignant from benign lesion of mediastinum. Zhonghua Yi Xue Za Zhi. 2007;87(47):3317–20.

    PubMed  Google Scholar 

  26. Murphy RC, Kawashima A, Peller PJ. The utility of 11C-choline PET/CT for imaging prostate cancer: a pictorial guide. AJR Am J Roentgenol. 2011;196(6):1390–8.

    Article  PubMed  Google Scholar 

  27. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392–401.

    Article  PubMed  Google Scholar 

  28. Igerc I, Kohlfürst S, Gallowitsch HJ, Matschnig S, Kresnik E, Gomez-Segovia I, et al. The value of 18F-choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):976–83.

    Article  PubMed  CAS  Google Scholar 

  29. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging. 2002;29(3):351–60.

    Article  PubMed  CAS  Google Scholar 

  30. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging. 2003;30(4):588–96.

    Article  PubMed  Google Scholar 

  31. Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging. 2003;30(4):603–6.

    Article  PubMed  Google Scholar 

  32. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9.

    Article  PubMed  Google Scholar 

  33. Souvatzoglou M, Ziegler SI, Martinez MJ, Busch R, Dzewas G, Schwaiger M, et al. Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET. Eur J Nucl Med Mol Imaging. 2007;34(3):405–12.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med. 2002;43:1137–43.

    PubMed  Google Scholar 

  35. Schöder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34:274–92.

    Article  PubMed  Google Scholar 

  36. Hara T. C-11 choline and 2-deoxy-2[F-18]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol. 2002;4:267–73.

    Article  PubMed  Google Scholar 

  37. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with 11Ccholine PET/CT. J Nucl Med. 2006;47:1249–54.

    PubMed  CAS  Google Scholar 

  38. Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35(1):9–17.

    Article  PubMed  Google Scholar 

  39. Piert M, Park H, Khan A, Siddiqui J, Hussain H, Chenevert T, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med. 2009;50(10):1585–93.

    Article  PubMed  CAS  Google Scholar 

  40. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(2):253–63.

    Article  PubMed  Google Scholar 

  41. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging. 2008;35(6):1065–73.

    Article  PubMed  CAS  Google Scholar 

  42. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50(9):1394–400.

    Article  PubMed  Google Scholar 

  43. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(2):301–9.

    Article  PubMed  Google Scholar 

  44. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Højgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging. 2005;32(10):1167–75.

    Article  PubMed  CAS  Google Scholar 

  45. Yau YY, Chan WS, Tam YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med. 2005;46(2):283–91.

    PubMed  Google Scholar 

  46. Antoch G, Freudenberg LS, Egelhof T, Stattaus J, Jentzen W, Debatin JF, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med. 2002;43:1339–42.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients and their relatives for participating in this study. Furthermore, we thank the whole PET/CT and PET/MR team for their excellent technical assistance as well as the cyclotron team for reliable tracer supply. This study was supported by the DFG (Deutsche Forschungsgemeinschaft, Grossgeräteinitiative), which funded the installation of the PET/MR scanner at the Technische Universität München. In addition, this work was supported by the SFB (Sonderforschungsbereich) 824 and by the Graduate School of Information Science in Health (GSISH) and the TUM Graduate School.

Conflicts of interest

The Department of Nuclear Medicine, Technische Universität München, has established a research cooperation contract with Siemens Healthcare AG, and three of the authors have been invited to present lectures on PET/MR by Siemens Healthcare AG. No other potential conflicts of interest relevant to this article are reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Souvatzoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souvatzoglou, M., Eiber, M., Takei, T. et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 40, 1486–1499 (2013). https://doi.org/10.1007/s00259-013-2467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2467-y

Keywords

Navigation