Skip to main content
Log in

68Ga-DOTA0-Tyr3-octreotide positron emission tomography in head and neck squamous cell carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

68Ga-labelled DOTA0-Tyr3-octreotide positron emission tomography (PET)/CT (68Ga-DOTATOC PET/CT) is a routinely used imaging modality for neuroendocrine tumours expressing somatostatin receptors (SSTRs). Recent studies have shown that SSTRs are also expressed in head and neck squamous cell carcinoma (HNSCC). This is the first prospective clinical trial investigating SSTR expression in patients with HNSCC using 68Ga-DOTATOC.

Methods

Patients with previously untreated HNSCC underwent 68Ga-DOTATOC PET/CT (120 MBq, range 81–150 MBq). Tumour tracer uptake was scored, the maximum standardized uptake value (SUVmax) was measured and the tumour to background uptake ratio was calculated. For each patient, PET/CT findings were correlated with immunohistochemical SSTR expression in tumour specimens.

Results

Fifteen HNSCC patients were included in the study from May 2011 to May 2012. Tumour-specific 68Ga-DOTATOC uptake was detected in all patients with an median SUVmax of 4.0 (range 2.2–6.5). Uptake was weak in seven (47 %), moderate in five (33 %) and strong in three (20 %) patients. All tumour specimens were SSTR positive on immunohistochemistry. Of the 15 patients, 14 were positive for SSTR subtype 2, characterized by the highest affinity to octreotide.

Conclusion

SSTR expression in HNSCC can be visualized clinically using 68Ga-DOTATOC PET/CT. SSTR expression in HNSCC could provide a potential target for SSTR-based therapy in patients not amenable to standard treatment modalities, but this cannot be predicted by SSTR immunohistochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973;179:77–9.

    Article  PubMed  CAS  Google Scholar 

  2. Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 2008;15:701–20.

    Article  PubMed  CAS  Google Scholar 

  3. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 2001;28:836–46.

    Article  PubMed  CAS  Google Scholar 

  4. Reubi JC. Clinical relevance of somatostatin receptor imaging. Eur J Endocrinol 1994;131:575–6.

    Article  PubMed  CAS  Google Scholar 

  5. Oberg KE, Reubi JC, Kwekkeboom DJ, Krenning EP. Role of somatostatins in gastroenteropancreatic neuroendocrine tumor development and therapy. Gastroenterology 2010;139:742–53.

    Article  PubMed  Google Scholar 

  6. Bombardieri E, Coliva A, Maccauro M, Seregni E, Orunesu E, Chiti A, et al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging 2010;54:3–15.

    PubMed  CAS  Google Scholar 

  7. Nisman B, Heching N, Biran H, Barak V, Peretz T. The prognostic significance of circulating neuroendocrine markers chromogranin a, pro-gastrin-releasing peptide and neuron-specific enolase in patients with advanced non-small-cell lung cancer. Tumour Biol 2006;27:8–16.

    Article  PubMed  CAS  Google Scholar 

  8. Yuan A, Liu J, Liu Y, Cui G. Chromogranin A-positive tumor cells in human esophageal squamous cell carcinomas. Pathol Oncol Res 2007;13:321–5.

    Article  PubMed  CAS  Google Scholar 

  9. Stafford ND, Condon LT, Rogers MJ, MacDonald AW, Atkin SL. The expression of somatostatin receptors 1 and 2 in benign, pre-malignant and malignant laryngeal lesions. Clin Otolaryngol Allied Sci 2003;28:314–9.

    Article  PubMed  CAS  Google Scholar 

  10. Condon LT, Stafford ND, Bedford KJ, MacDonald AW, Atkin SL. The expression of somatostatin receptors 3, 4 and 5 in laryngeal pathology. Eur Arch Otorhinolaryngol 2008;265 Suppl 1:S63–7.

    Article  PubMed  Google Scholar 

  11. Schartinger VH, Falkeis C, Laimer K, Sprinzl GM, Riechelmann H, Rasse M, et al. Neuroendocrine differentiation in head and neck squamous cell carcinoma. J Laryngol Otol 2012;126:1261–70.

    Google Scholar 

  12. Ambrosini V, Campana D, Tomassetti P, Grassetto G, Rubello D, Fanti S. PET/CT with 68Gallium-DOTA-peptides in NET: an overview. Eur J Radiol 2011;80:e116–9.

    Article  PubMed  Google Scholar 

  13. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  14. Miederer M, Seidl S, Buck A, Scheidhauer K, Wester HJ, Schwaiger M, et al. Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur J Nucl Med Mol Imaging 2009;36:48–52.

    Article  PubMed  CAS  Google Scholar 

  15. Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Commun 2007;28:870–5.

    Article  PubMed  CAS  Google Scholar 

  16. Fujita T, Yamaji Y, Sato M, Murao K, Takahara J. Gene expression of somatostatin receptor subtypes, SSTR1 and SSTR2, in human lung cancer cell lines. Life Sci 1994;55:1797–806.

    Article  PubMed  CAS  Google Scholar 

  17. Sagman U, Mullen JB, Kovacs K, Kerbel R, Ginsberg R, Reubi JC. Identification of somatostatin receptors in human small cell lung carcinoma. Cancer 1990;66:2129–33.

    Article  PubMed  CAS  Google Scholar 

  18. Savelli G, Lucignani G, Seregni E, Marchianò A, Serafini G, Aliberti G, et al. Feasibility of somatostatin receptor scintigraphy in the detection of occult primary gastro-entero-pancreatic (GEP) neuroendocrine tumours. Nucl Med Commun 2004;25:445–9.

    Article  PubMed  Google Scholar 

  19. Culler MD, Öberg K, Arnold R, Krenning EP, Sevilla I, Díaz JA. Somatostatin analogs for the treatment of neuroendocrine tumors. Cancer Metastasis Rev 2011;30 Suppl 1:9–17.

    Article  PubMed  CAS  Google Scholar 

  20. Anthony L, Freda PU. From somatostatin to octreotide LAR: evolution of a somatostatin analogue. Curr Med Res Opin 2009;25:2989–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Kvols LK, Woltering EA. Role of somatostatin analogs in the clinical management of non-neuroendocrine solid tumors. Anticancer Drugs 2006;17:601–8.

    Article  PubMed  CAS  Google Scholar 

  22. Krenning EP, Kwekkeboom DJ, Bakker WH, Breeman WA, Kooij PP, Oei HY, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716–31.

    PubMed  CAS  Google Scholar 

  23. Gabriel M, Andergassen U, Putzer D, Kroiss A, Waitz D, Von Guggenberg E, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 2010;54:92–9.

    PubMed  CAS  Google Scholar 

  24. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 2010;37:2004–10.

    Article  PubMed  Google Scholar 

  25. Teunissen JJ, Kwekkeboom DJ, Valkema R, Krenning EP. Nuclear medicine techniques for the imaging and treatment of neuroendocrine tumours. Endocr Relat Cancer 2011;18 Suppl 1:S27–51.

    Article  PubMed  CAS  Google Scholar 

  26. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  27. Gilon C, Huenges M, Mathä B, Gellerman G, Hornik V, Afargan M, et al. A backbone-cyclic, receptor 5-selective somatostatin analogue: synthesis, bioactivity, and nuclear magnetic resonance conformational analysis. J Med Chem 1998;41:919–29.

    Article  PubMed  CAS  Google Scholar 

  28. Kvols LK, Oberg KE, O’Dorisio TM, Mohideen P, de Herder WW, Arnold R, et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: results from a phase II study. Endocr Relat Cancer 2012;19:657–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker H. Schartinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schartinger, V.H., Dudás, J., Decristoforo, C. et al. 68Ga-DOTA0-Tyr3-octreotide positron emission tomography in head and neck squamous cell carcinoma. Eur J Nucl Med Mol Imaging 40, 1365–1372 (2013). https://doi.org/10.1007/s00259-013-2442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2442-7

Keywords

Navigation