Skip to main content
Log in

Role of 18F-choline PET/CT in suspicion of relapse following definitive radiotherapy for prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aims of the study were (a) to evaluate the diagnostic role, by means of positive detection rate (PDR), of 18F-choline (CH) positron emission tomography (PET)/CT in patients with prostate cancer treated with radiotherapy, with curative intent, and suspicion of relapse during follow-up, (b) to correlate the PDR with trigger prostate-specific antigen (PSA), (c) to investigate the possible influence of androgen deprivation therapy (ADT) at the time of scan on PDR and (d) to assess distribution of metastatic spread.

Methods

18F-CH PET/CT exams from 46 consecutive patients (mean age 71.3 years, range 51–84 years) with prostate cancer (mean Gleason score 6.4, range 5–8) previously treated by definitive radiotherapy and with suspicion of relapse with negative or inconclusive conventional imaging were retrospectively evaluated. Of the 46 patients, 12 were treated with brachytherapy and 34 with external beam radiation therapy. Twenty-three patients were under ADT at the time of the examination. Trigger PSA was measured within 1 month before the exam (mean value 6.5 ng/ml, range 1.1–49.4 ng/ml). Patients were subdivided into four groups according to their PSA level: 1.0 < PSA ≤ 2.0 ng/ml (11 patients), 2.0 < PSA ≤ 4.0 ng/ml (16 patients), 4.0 < PSA ≤ 6.0 ng/ml (9 patients) and PSA > 6.0 ng/ml (10 patients). Correlation between ADT and PDR was investigated as well as between PSA and distribution of metastatic spread.

Results

The overall PDR of 18F-CH PET/CT was 80.4 % (37/46 patients), increasing with the increase of trigger PSA. PDR of 18F-CH PET/CT is not influenced by ADT (p = 0.710) even if PET performed under ADT demonstrated an overall higher PDR (82.6 %). The majority of the patients (59 %, 22/37 patients) showed local relapse only, confined to the prostatic bed; 22 % of the PET/CT-positive patients (8/37 patients) showed distant relapse only (bone localizations in all of them), while the remaining 19 % (7/37 patients) showed both local and distant (lymph node and bone) spread.

Conclusion

18F-CH PET/CT showed a high overall detection rate (80 %), proportional to the trigger PSA (both for local and distant relapse) not influenced by ADT. 18F-CH PET/CT is proposed as a first-line imaging procedure in restaging prostate cancer patients primarily treated with radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kessler B, Albertsen P. The natural history of prostate cancer. Urol Clin North Am 2003;30:219–22.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  3. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987;317:909–16.

    Article  PubMed  CAS  Google Scholar 

  4. Loeb S, Catalona WJ. What is the role of digital rectal examination in men undergoing serial screening of serum PSA levels? Nat Clin Pract Urol 2009;6:68–9.

    Article  PubMed  Google Scholar 

  5. Hara R, Jo Y, Fujii T, Kondo N, Yokoyoma T, Miyaji Y, et al. Optimal approach for prostate cancer detection as initial biopsy: prospective randomized study comparing transperineal versus transrectal systematic 12-core biopsy. Urology 2008;71:191–5.

    Article  PubMed  Google Scholar 

  6. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur Urol 2011;59(1):61–71.

    Article  PubMed  Google Scholar 

  7. Freedland SJ, Presti Jr JC, Amling CL, Kane CJ, Aronson WJ, Dorey F, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology 2003;61:736–41.

    Article  PubMed  Google Scholar 

  8. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 2003;169:517–23.

    Article  PubMed  Google Scholar 

  9. Khuntia D, Reddy CA, Mahadevan A, Klein EA, Kupelian PA. Recurrence-free survival rates after external-beam radiotherapy for patients with clinical T1–T3 prostate carcinoma in the prostate-specific antigen era: what should we expect? Cancer 2004;100:1283–92.

    Article  PubMed  Google Scholar 

  10. Kuban DA, Thames HD, Levy LB, Horwitz EM, Kupelian PA, Martinez AA, et al. Long-term multi-institutional analysis of stage T1–T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys 2003;57:915–28.

    Article  PubMed  Google Scholar 

  11. Vickers AJ, Savage C, O’Brien MF, Lilia H. Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol 2009;27:398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999;36:31–5.

    Article  PubMed  CAS  Google Scholar 

  13. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 2001;57:108–11.

    Article  PubMed  CAS  Google Scholar 

  14. Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003;169:1337–40.

    Article  PubMed  CAS  Google Scholar 

  15. Rinnab L, Blumstein NM, Mottaghy FM, Hautmann RE, Küfer R, Hohl K, et al. (11)C-choline positron-emission tomography/computed tomography and transrectal ultrasonography for staging localized prostate cancer. BJU Int 2007;99:1421–6.

    Article  PubMed  CAS  Google Scholar 

  16. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [(11)C] choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:18–23.

    Article  PubMed  CAS  Google Scholar 

  17. Reske SN, Blumstein NM, Glatting G. [(11)C]Choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2008;35:9–17.

    Article  PubMed  Google Scholar 

  18. Giovacchini G, Picchio M, Briganti A, Cozzarini C, Scattoni V, Salonia A, et al. [11C]Choline positron emission tomography/computerized tomography to restage prostate cancer cases with biochemical failure after radical prostatectomy and no disease evidence on conventional imaging. J Urol 2010;184:938–43.

    Article  PubMed  Google Scholar 

  19. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 2009;50:1394–400.

    Article  PubMed  Google Scholar 

  20. Bertagna F, Abuhilal M, Bosio G, Simeone C, Rossini P, Pizzocaro C, et al. Role of 11C-choline positron emission tomography/computed tomography in evaluating patients affected by prostate cancer with suspected relapse due to prostate-specific antigen elevation. Jpn J Radiol 2011;29:394–404.

    Article  PubMed  CAS  Google Scholar 

  21. Giovacchini G, Picchio M, Parra RG, Briganti A, Gianolli L, Montorsi F, et al. Prostate-specific antigen velocity versus prostate-specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin Nucl Med 2012;37:325–31.

    Article  PubMed  Google Scholar 

  22. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]Fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006;33:1387–98.

    Article  PubMed  Google Scholar 

  23. Pelosi E, Arena V, Skanjeti A, Pirro V, Douroukas A, Pupi A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 2008;113:895–904.

    Article  PubMed  CAS  Google Scholar 

  24. Massaro A, Ferretti A, Secchiero C, Cittadin S, Milan E, Tamiso L, et al. Optimising (18)F-choline PET/CT acquisition protocol in prostate cancer patients. N Am J Med Sci 2012;4(9):416–20.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Surveillance, Epidemiology, and End Results (SEER) Program, SEER 17 Registries, 2004–2006, Division of Cancer Control and Population Science, National Cancer Institute, 2009.

  26. Agarwal PK, Sadetsky N, Konety BR, Resnick MI, Carroll PR, Cancer of the Prostate Strategic Urological Research Endeavor (CaPSURE). Treatment failure after primary and salvage therapy for prostate cancer: likelihood, patterns of care, and outcomes. Cancer 2008;112:307–11.

    Article  PubMed  Google Scholar 

  27. Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 2010;11:1066–73.

    Article  PubMed  CAS  Google Scholar 

  28. Roach 3rd M, Hanks G, Thames Jr H, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006;65(4):965–74.

    Article  PubMed  Google Scholar 

  29. Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 2010;52:81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. National Cancer Institute, Surveillance Epidemiology and End Results. SEER Stat Fact Sheets: Prostate. http://seer.cancer.gov/statfacts/html/prost.html.

  31. Choueiri TK, Dreicer R, Paciorek A, Carroll PR, Konety B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol 2008;179:906–10.

    Article  PubMed  Google Scholar 

  32. Cher ML, Bianco Jr FJ, Lam JS, Davis LP, Grignon DJ, Sakr WA, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol 1998;160:1387–91.

    Article  PubMed  CAS  Google Scholar 

  33. Gomez P, Manoharan M, Kim SS, Soloway MS. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int 2004;94:299–302.

    Article  PubMed  Google Scholar 

  34. Okotie OT, Aronson WJ, Wieder JA, Liao Y, Dorey F, DeKernion JB, et al. Predictors of metastatic disease in men with biochemical failure following radical prostatectomy. J Urol 2004;171:2260–4.

    Article  PubMed  Google Scholar 

  35. Yakar D, Hambrock T, Huisman H, Hulsbergen-van de Kaa CA, van Lin E, Vergunst H, et al. Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol 2010;45(3):121–5.

    Article  PubMed  Google Scholar 

  36. Breeuwsma AJ, Pruim J, van den Bergh AC, Leliveld AM, Nijman RJ, Dierckx RA, et al. Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 2010;77(1):160–4.

    Article  PubMed  Google Scholar 

  37. Marzola MC, Chondrogiannis S, Ferretti A, Grassetto G, Rampin L, Massaro A, et al. Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution. Clin Nucl Med 2013;38(1):e26–32.

    Article  PubMed  Google Scholar 

  38. Coleman R, DeGrado T, Wang S, Baldwin S, Orr M, Reiman R, et al. Preliminary evaluation of F-18 fluorocholine (FCH) as a PET tumor imaging agent. Clin Positron Imaging 2000;3:147.

    Article  PubMed  Google Scholar 

  39. Picchio M, Spinapolice EG, Fallanca F, Crivellaro C, Giovacchini G, Gianolli L, et al. [(11)C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging 2012;39:13–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Rubello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chondrogiannis, S., Marzola, M.C., Ferretti, A. et al. Role of 18F-choline PET/CT in suspicion of relapse following definitive radiotherapy for prostate cancer. Eur J Nucl Med Mol Imaging 40, 1356–1364 (2013). https://doi.org/10.1007/s00259-013-2433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2433-8

Keywords

Navigation