Skip to main content

Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

Abstract

Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of β-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661–81.

    PubMed  CAS  Google Scholar 

  2. Histed SN, Lindenberg ML, Mena E, Turkbey B, Choyke PL, Kurdziel KA. Review of functional/anatomical imaging in oncology. Nucl Med Commun 2012;33:349–61.

    PubMed  Article  Google Scholar 

  3. Kim WW, Kim JS, Hur SM, Kim SH, Lee S-K, Choi JH, et al. Radioguided surgery using an intraoperative PET probe for tumor localization and verification of complete resection in differentiated thyroid cancer: a pilot study. Surgery 2011;149:416–24.

    PubMed  Article  Google Scholar 

  4. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. “Anatometabolic” tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993;34:1190–7.

    PubMed  CAS  Google Scholar 

  5. Ichise M, Chung D-G, Wang P, Wortzman G, Gray BG, Franks W. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance. J Nucl Med 1994;35:217–26.

    PubMed  CAS  Google Scholar 

  6. Buckle T, van Leeuwen AC, Chin PTK, Janssen H, Muller SH, Jonkers J, et al. A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 2010;21:355101.

    PubMed  Article  Google Scholar 

  7. van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FWB. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 2011;60:826–33.

    PubMed  Article  Google Scholar 

  8. van den Berg NS, Brouwer OR, Klop WMC, Balm AJ, van den Brekel M, Valdés Olmos RA, et al. A hybrid tracer for concomitant radio- and fluorescence guided sentinel lymph node biopsy in oral cavity cancer. J Nucl Med 2012;53(Suppl 1):1666.

    Google Scholar 

  9. Chang H-C, Chung C-K. The development of fluorescence imaging systems for clinical applications—part I, broad-field fluorescence imaging. Int J Instrum Sci 2012;1:16–20.

    Google Scholar 

  10. van den Berg NS, van Leeuwen FWB, van der Poel HG. Fluorescence guidance in urologic surgery. Curr Opin Urol 2012;22:109–20.

    PubMed  Article  Google Scholar 

  11. Magnan P. Detection of visible photons in CCD and CMOS: a comparative view. Nucl Instrum Methods Phys Res A 2003;504:199–212.

    Article  CAS  Google Scholar 

  12. Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, et al. The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 2009;16:2943–52.

    PubMed  Article  Google Scholar 

  13. Spinelli AE, Boschi F. Optimizing in vivo small animal Cerenkov luminescence imaging. J Biomed Opt 2012;17:040506.

    PubMed  Article  Google Scholar 

  14. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry ST, Silva MD. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys Med Biol 2009;54:N355–65.

    PubMed  Article  CAS  Google Scholar 

  15. van Leeuwen AC, Buckle T, Bendle G, Vermeeren L, Valdés Olmos R, van der Poel HG, et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt 2011;16:016004.

    PubMed  Article  Google Scholar 

  16. Bhushan KR, Misra P, Liu F, Mathur S, Lenkinski RE, Frangioni JV. Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J Am Chem Soc 2008;130:17648–9.

    PubMed  Article  CAS  Google Scholar 

  17. Thorp-Greenwood FL, Coogan MP. Multimodal radio- (PET/SPECT) and fluorescence imaging agents based on metallo-radioisotopes: current applications and prospects for development of new agents. Dalton Trans 2011;40:6129–43.

    PubMed  Article  CAS  Google Scholar 

  18. Xu Y, Chang E, Liu H, Jiang H, Gambhir SS, Cheng Z. Proof-of-concept study of monitoring cancer drug therapy with Cerenkov luminescence imaging. J Nucl Med 2012;53:312–7.

    PubMed  Article  CAS  Google Scholar 

  19. Holland JP, Normand G, Ruggiero A, Lewis JS, Grimm J. Intraoperative imaging of positron emission tomographic radiotracers using Cerenkov luminescence emissions. Mol Imaging 2011;10:177–86.

    PubMed  Google Scholar 

  20. Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 2008;49:169–72.

    PubMed  Article  Google Scholar 

  21. Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer. Mol Biosyst 2009;5:1279–91.

    PubMed  Article  CAS  Google Scholar 

  22. Huang Y-Y, Chen AC-H, Hamblin M. Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom. doi:10.1117/2.1200906.1669.

  23. Lubart R, Lavie R, Friedman H. The penetration of white light through human tissue. Photomed Laser Surg 2005;23:435–6.

    PubMed  Article  Google Scholar 

  24. Chin PTK, Beekman CA, Buckle T, Josephson L, van Leeuwen FWB. Multispectral visualization of surgical safety-margins using fluorescent marker seeds. Am J Nucl Med Mol Imaging 2012;2:151–62.

    PubMed  CAS  Google Scholar 

  25. Mourant JR, Fuselier T, Boyer J, Johnson TM, Bigio IJ. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl Opt 1997;36:949–57.

    PubMed  Article  CAS  Google Scholar 

  26. Andersson-Engels S, Klinteberg C, Svanberg K, Svanberg S. In vivo fluorescence imaging for tissue diagnostics. Phys Med Biol 1997;42:815–24.

    PubMed  Article  CAS  Google Scholar 

  27. Reibel Y, Jung M, Bouhifd M, Cunin B, Draman C. CCD or CMOS camera noise characterisation. Eur Phys J Appl Phys 2003;21:75–80.

    Article  Google Scholar 

  28. Cerenkov PA. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys Rev 1937;52:378–9.

    Article  Google Scholar 

  29. Cho JS, Taschereau R, Olma S, Liu K, Chen YC, Shen CKF, et al. Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip. Phys Med Biol 2009;54:6757–71.

    PubMed  Article  CAS  Google Scholar 

  30. Wu JC, Sundaresan G, Iyer M, Gambhir SS. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001;4:297–306.

    PubMed  Article  CAS  Google Scholar 

  31. Contag CH, Spilman SD, Contag PR, Oshiro M, Eames B, Dennery P, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;66:523–31.

    PubMed  Article  CAS  Google Scholar 

  32. Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Transact A Math Phys Eng Sci 2011;369:4605–19.

    Article  CAS  Google Scholar 

  33. Frank IM, Tamm IE. Coherent visible radiation of fast electrons passing through matter. Dokl Akad Nauk SSSR 1937;14:109–14.

    CAS  Google Scholar 

  34. Pfennig G, Klewe-Nebenius H, Seelmann-Eggebert W. Karlsruher Nuklidkarte. 6th ed. Lage: Haberbeck; 1998.

    Google Scholar 

  35. Stübel H. Die Fluoreszenz tierischer Gewebe in ultraviolettem Licht. Pflugers Arch Physiol 1911;142:1–14.

    Article  Google Scholar 

  36. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003;9:123–8.

    Article  CAS  Google Scholar 

  37. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng 2006;8:1–33.

    PubMed  Article  CAS  Google Scholar 

  38. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003;7:626–34.

    PubMed  Article  CAS  Google Scholar 

  39. Moore GE, Peyton WT, French LA, Walker WW. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg 1948;5:392–8.

    Article  CAS  Google Scholar 

  40. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012;2012:940585.

    PubMed  Article  Google Scholar 

  41. Martin MM, Lindqvist L. The pH dependence of fluorescein fluorescence. J Lumin 1975;10:381–90.

    Article  CAS  Google Scholar 

  42. Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol 2008;3:142–55.

    PubMed  Article  CAS  Google Scholar 

  43. Concepts in digital imaging technology quantum efficiency http://learn.hamamatsu.com/articles/quantumefficiency.html.

  44. Brouwer OR, Klop MWC, Buckle T, Vermeeren L, van den Brekel MWM, Balm FJM, Nieweg OE, et al. Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol 2012;19:1988–94.

    PubMed  Article  Google Scholar 

  45. Brouwer OR, Buckle T, Vermeeren L, Klop WMC, Balm AJM, van der Poel HG, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med 2012;53:1034–40.

    PubMed  Article  CAS  Google Scholar 

  46. Buckle T, Brouwer OR, Valdés Olmos RA, van der Poel HG, van Leeuwen FWB. Relation between intraprostatic tracer deposits and sentinel lymph node mapping in prostate cancer patients. J Nucl Med 2012;53:1026–33.

    PubMed  Article  Google Scholar 

  47. Lee S-K, Mills A. Luminescence of leuco-thiazine dyes. J Fluoresc 2003;13:375–7.

    Article  CAS  Google Scholar 

  48. Landsman MLJ, Kwant G, Mook GA, Zijlstra WG. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575–83.

    PubMed  CAS  Google Scholar 

  49. Kuil J, Velders AH, van Leeuwen FWB. Multimodal tumor-targeting peptides functionalized with both a radio- and a fluorescent-label. Bioconjug Chem 2010;21:1709–19.

    PubMed  Article  CAS  Google Scholar 

  50. Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov luminescence imaging of medical isotopes. J Nucl Med 2010;51:1123–30.

    PubMed  Article  CAS  Google Scholar 

  51. Grimm J, Schöder H. Non-invasive Cerenkov luminescence imaging of lymphoma, leukemia and metastatic lymph nodes. 2012. http://www.ClinicalTrails.gov, Identifier: NCT01664936.

  52. Dothager RS, Goiffon RJ, Jackson E, Harpstrite S, Piwnica-Worms D. Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems. PLoS One 2010;5:e13300.

    PubMed  Article  Google Scholar 

  53. Kothapalli S-R, Liu H, Liao JC, Cheng Z, Gambhir SS. Endoscopic imaging of Cerenkov luminescence. Biomed Opt Express 2012;3:1215–25.

    PubMed  Article  CAS  Google Scholar 

  54. Liu H, Carpenter CM, Jiang H, Pratx G, Sun C, Buchin MP, et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J Nucl Med 2012;53:1579–84.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the division of Chemical Sciences (CW) of the Dutch Science Foundation (NWO) under grant number VENI 722.011.005 (PC) and NWO-STW-VIDI (Grant No. STW BGT11271; FvL).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fijs W. B. van Leeuwen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 89.0 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chin, P.T.K., Welling, M.M., Meskers, S.C.J. et al. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging 40, 1283–1291 (2013). https://doi.org/10.1007/s00259-013-2408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2408-9

Keywords

  • Cerenkov
  • Fluorescence
  • Multimodal imaging
  • Image-guided surgery
  • Nuclear medicine