Skip to main content

Advertisement

Log in

PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The objective of the study was to validate an adaptive, contrast-oriented thresholding algorithm (COA) for tumour delineation in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for non-small cell lung cancer (NSCLC) in comparison with pathological findings. The impact of tumour localization, tumour size and uptake heterogeneity on PET delineation results was also investigated.

Methods

PET tumour delineation by COA was compared with both CT delineation and pathological findings in 15 patients to investigate its validity. Correlations between anatomical volume, metabolic volume and the pathology reference as well as between the corresponding maximal diameters were determined. Differences between PET delineations and pathological results were investigated with respect to tumour localization and uptake heterogeneity.

Results

The delineated volumes and maximal diameters measured on PET and CT images significantly correlated with the pathology reference (both r > 0.95, p < 0.0001). Both PET and CT contours resulted in overestimation of the pathological volume (PET 32.5 ± 26.5 %, CT 46.6 ± 27.4 %). CT volumes were larger than those delineated on PET images (CT 60.6 ± 86.3 ml, PET 48.3 ± 61.7 ml). Maximal tumour diameters were similar for PET and CT (51.4 ± 19.8 mm for CT versus 53.4 ± 19.1 mm for PET), slightly overestimating the pathological reference (mean difference CT 4.3 ± 3.2 mm, PET 6.2 ± 5.1 mm). PET volumes of lung tumours located in the lower lobe were significantly different from those determined from pathology (p = 0.037), whereas no significant differences were observed for tumours located in the upper lobe (p = 0.066). Only minor correlation was found between pathological tumour size and PET heterogeneity (r = −0.24).

Conclusion

PET tumour delineation by COA showed a good correlation with pathological findings. Tumour localization had an influence on PET delineation results. The impact of tracer uptake heterogeneity on PET delineation should be considered carefully and individually in each patient. Altogether, PET tumour delineation by COA for NSCLC patients is feasible and reliable with the potential for routine clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, et al. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 2001;42(11):1596–604.

    Google Scholar 

  2. Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48(2):119–42.

    PubMed  CAS  Google Scholar 

  3. Mac Manus MP, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012;42(5):308–19.

    Article  PubMed  Google Scholar 

  4. Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54(1):R1–25.

    Article  PubMed  Google Scholar 

  5. Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 2012;82(1):435–441.e1.

    Article  PubMed  Google Scholar 

  6. Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 2010;96(3):277–9.

    Article  PubMed  Google Scholar 

  7. Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, et al. Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010;77(4):1151–7.

    Article  PubMed  Google Scholar 

  8. Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010;37(11):2165–87.

    Article  PubMed  Google Scholar 

  9. Thorwarth D, Schaefer A. Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology. Q J Nucl Med Mol Imaging 2010;54(5):490–9.

    PubMed  CAS  Google Scholar 

  10. Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010;96(3):302–7.

    Article  PubMed  Google Scholar 

  11. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.

    Article  PubMed  CAS  Google Scholar 

  12. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69(3):247–50.

    Article  PubMed  Google Scholar 

  13. El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34(12):4738–49.

    Article  PubMed  Google Scholar 

  14. Geets X, Lee JA, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34(9):1427–38.

    Article  PubMed  Google Scholar 

  15. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28(6):881–93.

    Article  PubMed  Google Scholar 

  16. Thorwarth D, Beyer T, Boellaard R, de Ruysscher D, Grgic A, Lee JA, et al. Integration of FDG-PET/CT into external beam radiation therapy planning: technical aspects and recommendations on methodological approaches. Nuklearmedizin 2012;51(4):140–53.

    Article  PubMed  CAS  Google Scholar 

  17. Somer EJ, Pike LC, Marsden PK. Recommendations for the use of PET and PET-CT for radiotherapy planning in research projects. Br J Radiol 2012;85(1016):e544–8.

    Article  PubMed  CAS  Google Scholar 

  18. Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35(11):1989–99.

    Article  PubMed  Google Scholar 

  19. Fleckenstein J, Hellwig D, Kremp S, Grgic A, Gröschel A, Kirsch CM, et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys 2011;81(4):e283–9.

    Article  PubMed  Google Scholar 

  20. Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24(1):6–15.

    Article  PubMed  CAS  Google Scholar 

  21. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  22. Schaefer A, Nestle U, Kremp S, Hellwig D, Grgic A, Buchholz HG, et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 2012;51(3):101–10.

    Google Scholar 

  23. Turkington TG, DeGrado T, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4–10:2234–7.

    Google Scholar 

  24. Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18(1):37–42.

    Article  PubMed  Google Scholar 

  25. Bornemann L, Kuhnigk JM, Dicken V, Zidowitz S, Kuemmerlen B, Krass S, et al. Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT part 2. Therapy monitoring of pulmonary metastases. Radiographics 2005;25(3):841–8.

    Article  PubMed  Google Scholar 

  26. Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A, et al. Impact of rigid and nonrigid registration on the determination of 18F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011;38(5):856–64.

    Article  PubMed  Google Scholar 

  27. van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68(3):771–8.

    Article  PubMed  Google Scholar 

  28. Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011;52(11):1690–7.

    Article  PubMed  Google Scholar 

  29. Wu K, Ung YC, Hornby J, Freeman M, Hwang D, Tsao MS, et al. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings? Int J Radiat Oncol Biol Phys 2010;77(3):699–706.

    Article  PubMed  Google Scholar 

  30. Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 2003;21(13):2574–82.

    Article  PubMed  Google Scholar 

  31. Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp L, Uitterhoeve AL, et al. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a ‘Big Brother’ evaluation. Radiother Oncol 2005;77(2):182–90.

    Article  PubMed  Google Scholar 

  32. Bolte H, Jahnke T, Schäfer FK, Wenke R, Hoffmann B, Freitag-Wolf S, et al. Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels. Eur J Radiol 2007;64(2):285–95.

    Article  PubMed  CAS  Google Scholar 

  33. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233(1):93–100.

    Article  PubMed  Google Scholar 

  34. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46(8):1342–8.

    PubMed  Google Scholar 

  35. Cheebsumon P, Boellaard R, de Ruysscher D, van Elmpf W, van Baardwijk A, Yaqub M, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res 2012;2(1):56.

    Article  PubMed  Google Scholar 

  36. Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(18)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 2011;38(12):2136–44.

    Article  PubMed  Google Scholar 

  37. Hofheinz F, Dittrich S, Pötzsch C, Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010;55(4):1099–113.

    Article  PubMed  CAS  Google Scholar 

  38. Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys 2012;82(1):e99–105.

    Article  PubMed  Google Scholar 

  39. Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging 2011;38(6):987–91.

    Article  PubMed  Google Scholar 

  40. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011;52(3):369–78.

    Article  PubMed  Google Scholar 

  41. Vansteenkiste JF. PET scan in the staging of non-small cell lung cancer. Lung Cancer 2003;42 Suppl 1:S27–37.

    Article  PubMed  Google Scholar 

  42. Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71(3):267–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the valuable support of Dipl. Ing. P. Donsch in the preparation of the phantoms.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Schaefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, A., Kim, Y.J., Kremp, S. et al. PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings. Eur J Nucl Med Mol Imaging 40, 1233–1244 (2013). https://doi.org/10.1007/s00259-013-2407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2407-x

Keywords

Navigation