Skip to main content

Advertisement

Log in

Glucose corrected standardized uptake value (SUVgluc) in the evaluation of brain lesions with 18F-FDG PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To retrospectively assess the utility of 18F fluorodeoxyglucose (FDG) positron emission tomography (PET) images of standardized uptake values corrected for blood glucose (SUVgluc), and to compare this to various quantitative methods to identify the presence or absence of high grade malignancy.

Methods

A retrospective review in 42 patients, found 81 central nervous system (CNS) lesions. Fifty one were malignant and 30 were benign or post treatment changes based on pathology (n = 32) and on clinical outcome (n = 49). Dynamic FDG PET scans were processed to generate parametric images of SUVgluc, SUV, glucose metabolic rate (GMR), and lesion to cerebellum ratios (SUVRc), and contralateral white matter ratios (SUVRw). The SUVgluc was calculated from \( {{{\mathrm{SU}{{\mathrm{V}}_{\max }}*\mathrm{BG}}} \left/ {{\left[ {100\,\mathrm{mg}/\mathrm{dl}} \right]}} \right.} \), where SUVmax is the maximum SUV and BG is the blood glucose level (mg/dL).

Results

Using a malignant threshold for SUVgluc of 4.5 and GMR of 13.0 μmole/min/100 g, the accuracies were similar for the SUVgluc (80 %) and GMR (81 %) and were higher than the conventional SUVmax (73 %). The area under the receiver operating characteristic (ROC) curve for the SUVgluc (0.8661) was better than that for the SUVmax (0.7955) (p < 0.02) and was similar to those of the GMR (0.8694), SUVRc (0.8278), and SUVRw (0.8559).

Conclusion

These results suggest that the SUVgluc may assist in the interpretation of FDG PET brain images in patients with CNS lesions. The SUVgluc method avoids the complexity of kinetic modeling and the definition of a reference region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, et al. Measurement of the global lumped constant for 2-deoxy-2-[18F]fluoro-D-glucose in normal human brain using [15O]water and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imaging Biol. 2003;5(1):32–41.

    Article  PubMed  Google Scholar 

  2. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6(5):371–88. doi:10.1002/ana.410060502.

    Article  PubMed  CAS  Google Scholar 

  3. Behrens GMN. Impaired glucose phosphorylation and transport in skeletal muscle cause insulin resistance in HIV-1-infected patients with lipodystrophy. J Clin Investig. 2002;110(9):1319–27. doi:10.1172/jci200215626.

    PubMed  CAS  Google Scholar 

  4. Kimura N, Yamamoto Y, Kameyama R, Hatakeyama T, Kawai N, Nishiyama Y. Diagnostic value of kinetic analysis using dynamic 18F-FDG-PET in patients with malignant primary brain tumor. Nucl Med Commun. 2009;30(8):602–9. doi:10.1097/MNM.0b013e32832e1c7d.

    Article  PubMed  Google Scholar 

  5. Britz-Cunningham SH, Millstine JW, Gerbaudo VH. Improved discrimination of benign and malignant lesions on FDG PET/CT, using comparative activity ratios to brain, basal ganglia, or cerebellum. Clin Nucl Med. 2008;33(10):681–7. doi:10.1097/RLU.0b013e318184b435.

    Article  PubMed  Google Scholar 

  6. Lee SM, Kim TS, Lee JW, Kim SK, Park SJ, Han SS. Improved prognostic value of standardized uptake value corrected for blood glucose level in pancreatic cancer using F-18 FDG PET. Clin Nucl Med. 2011;36(5):331–6. doi:10.1097/RLU.0b013e31820a9eea.

    Article  PubMed  Google Scholar 

  7. Hoh CK. Title of subordinate document. In: Independent component analysis minimizing the mutual information criteria in polar coordinates. Proceedings of the Internatilnal multi-conference on complexity, informatics, and cybernetics. IMCIC, Orlado Fl 2010. http://www.iiis.org/CDs2010/CD2010IMC/IMCIC_2010/PapersPdf/ZA628PP.pdf. 2010.

  8. Wu H, Dimitrakopoulou-Strauss A, Heichel T, Lehner B, Bernd L, Ewerbeck V, et al. Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med Molec Imaging. 2001;28(6):704–10. doi:10.1007/s002590100511.

    Article  CAS  Google Scholar 

  9. Goldman S, Levivier M, Pirotte B, Brucher JM, Wikler D, Damhaut P, et al. Regional glucose metabolism and histopathology of gliomas. A study based on positron emission tomography-guided stereotactic biopsy. Cancer. 1996;78(5):1098–106. doi:10.1002/(sici)1097-0142(19960901)78:5<1098::aid-cncr21>3.0.co;2-x.

    Article  PubMed  CAS  Google Scholar 

  10. Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A. Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med. 1999;26(11):1501–9.

    Article  PubMed  CAS  Google Scholar 

  11. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32(12):1323–9.

    Article  PubMed  Google Scholar 

  12. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology. 1995;195(1):47–52.

    PubMed  CAS  Google Scholar 

  13. Barker 2nd FG, Chang SM, Valk PE, Pounds TR, Prados MD. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer. 1997;79(1):115–26.

    Article  PubMed  CAS  Google Scholar 

  14. Narayanan TK, Said S, Mukherjee J, Christian B, Satter M, Dunigan K, et al. A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma. Mol Imaging Biol. 2002;4(2):147–56.

    Article  PubMed  CAS  Google Scholar 

  15. Borbely K, Nyary I, Toth M, Ericson K, Gulyas B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;246(1–2):85–94. doi:10.1016/j.jns.2006.02.015.

    Article  PubMed  CAS  Google Scholar 

  16. Kosaka N, Tsuchida T, Uematsu H, Kimura H, Okazawa H, Itoh H. 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol. 2008;190(6):W365–9. doi:10.2214/AJR.07.2660.

    Article  PubMed  Google Scholar 

  17. Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52(6):865–72. doi:10.2967/jnumed.110.085324.

    Google Scholar 

  18. Ishizu K, Nishizawa S, Yonekura Y, Sadato N, Magata Y, Tamaki N, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994;35(7):1104–9.

    PubMed  CAS  Google Scholar 

  19. Kim CK, Gupta NC. Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun. 1996;17(10):890–4.

    Article  PubMed  CAS  Google Scholar 

  20. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med. 1993;34(1):1–6.

    PubMed  CAS  Google Scholar 

  21. Wong CY, Thie J, Parling-Lynch KJ, Zakalik D, Margolis JH, Gaskill M, et al. Glucose-normalized standardized uptake value from (18)F-FDG PET in classifying lymphomas. J Nucl Med. 2005;46(10):1659–63.

    PubMed  Google Scholar 

  22. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med. 2004;45(5):784–8.

    PubMed  CAS  Google Scholar 

  23. Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH. Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun. 2001;22(10):1077–81.

    Article  PubMed  CAS  Google Scholar 

  24. Fink J, Born D, Chamberlain MC. Pseudoprogression: relevance with respect to treatment of high-grade gliomas. Curr Treat Options in Oncol. 2011;12(3):240–52. doi:10.1007/s11864-011-0157-1.

    Article  Google Scholar 

  25. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22(6):633–8. doi:10.1097/WCO.0b013e328332363e.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Wagner Torizuka Fellowship Program to A. Nozawa and by grants from National Institute of Health (NIH 3P30CA023100-25S8) and from UC San Diego Brain Cancer Research Funds to S. Kesari.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl K. Hoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozawa, A., Rivandi, A.H., Kesari, S. et al. Glucose corrected standardized uptake value (SUVgluc) in the evaluation of brain lesions with 18F-FDG PET. Eur J Nucl Med Mol Imaging 40, 997–1004 (2013). https://doi.org/10.1007/s00259-013-2396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2396-9

Keywords

Navigation