Skip to main content

Advertisement

Log in

Myocardial perfusion reserve in spared myocardium: correlation with infarct size and left ventricular ejection fraction

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Left ventricular ejection fraction (LVEF) after myocardial infarction is considered to be determined by the size of the infarction and residual function of the spared myocardium. Myocardial perfusion reserve (MPR) has been shown to be a strong prognostic factor in patients with ischaemic heart failure, even stronger than LVEF. In the present study, the interrelationship between MPR, LVEF and infarct size was investigated.

Methods

In total, 102 patients with a prior history of myocardial infarction were included. All underwent rest and stress 13N-ammonia and gated 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for evaluation of myocardial ischaemia and viability. FDG polar maps were used to determine the size of the infarction. The LVEF was obtained by gated 18F-FDG PET or another available method within 3 months of the PET scan. MPR was obtained per segment in the spared myocardium.

Results

The mean age of the subjects was 68 ± 12 years. Global MPR was 1.63 ± 0.51. The mean LVEF was 36 ± 10 % and mean infarct size 23.72 ± 14.8 %. A linear regression model was applied for the analysis considering the LVEF as a dependent variable. All risk factors, mean stress flow, infarct size and MPR were entered as variables. The infarct size (p < 0.001) and MPR (p = 0.04) reached statistical significance. In a multivariate model MPR had a stronger correlation with LVEF than infarct size.

Conclusion

In patients with a prior history of myocardial infarction, LVEF is not just related to infarct size but also to MPR in the spared myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahon NG, O’Rorke C, Codd MB, McCann HA, McGarry K, Sugrue DD. Hospital mortality of acute myocardial infarction in the thrombolytic era. Heart 1999;81(5):478–82.

    PubMed  CAS  Google Scholar 

  2. Tio RA, Dabeshlim A, Siebelink HM, de Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 2009;50(2):214–9.

    Article  PubMed  Google Scholar 

  3. Tio RA, Slart RH, de Boer RA, van der Vleuten PA, de Jong RM, van Wijk LM, et al. Reduced regional myocardial perfusion reserve is associated with impaired contractile performance in idiopathic dilated cardiomyopathy. Neth Heart J 2009;17(12):470–4.

    Article  PubMed  CAS  Google Scholar 

  4. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, Blanksma PK, Siebelink HM, Vaalburg WM, et al. Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2000;35(1):19–28.

    Article  PubMed  Google Scholar 

  5. de Boer RA, Pinto YM, van Veldhuisen DJ. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 2003;10(2):113–26.

    PubMed  Google Scholar 

  6. van Veldhuisen DJ, van den Heuvel AF, Blanksma PK, Crijns HJ. Ischemia and left ventricular dysfunction: a reciprocal relation? J Cardiovasc Pharmacol 1998;32 Suppl 1:S46–51.

    PubMed  Google Scholar 

  7. Slart RH, Zeebregts CJ, Hillege HL, de Sutter J, Dierckx RA, van Veldhuisen DJ, et al. Myocardial perfusion reserve after a PET-driven revascularization procedure: a strong prognostic factor. J Nucl Med 2011;52(6):873–9.

    Article  PubMed  Google Scholar 

  8. Vatner SF, Hittinger L. Myocardial perfusion dependent and independent mechanisms of regional myocardial dysfunction in hypertrophy. Basic Res Cardiol 1993;88 Suppl 1:81–95.

    PubMed  Google Scholar 

  9. Vatner SF, Hittinger L. Coronary vascular mechanisms involved in decompensation from hypertrophy to heart failure. J Am Coll Cardiol 1993;22(4 Suppl A):34A–40.

    Article  PubMed  CAS  Google Scholar 

  10. Pride YB, Giuseffi JL, Mohanavelu S, Harrigan CJ, Manning WJ, Gibson CM, et al. Relation between infarct size in ST-segment elevation myocardial infarction treated successfully by percutaneous coronary intervention and left ventricular ejection fraction three months after the infarct. Am J Cardiol 2010;106(5):635–40.

    Article  PubMed  Google Scholar 

  11. Knuuti MJ, Yki-Järvinen H, Voipio-Pulkki LM, Mäki M, Ruotsalainen U, Härkönen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35(6):989–98.

    PubMed  CAS  Google Scholar 

  12. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Härkönen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33(7):1255–62.

    PubMed  CAS  Google Scholar 

  13. Blanksma PK, Willemsen ATM, Meeder JG, de Jong RM, Anthonio RL, Pruim J, et al. Quantitative myocardial mapping of perfusion and metabolism using parametric polar map displays in cardiac PET. J Nucl Med 1995;36(1):153–8.

    PubMed  CAS  Google Scholar 

  14. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15(5):1032–42.

    Article  PubMed  CAS  Google Scholar 

  15. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30(3):359–66.

    PubMed  CAS  Google Scholar 

  16. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36(11):2138–47.

    PubMed  CAS  Google Scholar 

  17. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349(11):1027–35.

    Article  PubMed  CAS  Google Scholar 

  18. Lauer MS, Blackstone EH, Young JB, Topol EJ. Cause of death in clinical research: time for a reassessment? J Am Coll Cardiol 1999;34(3):618–20.

    Article  PubMed  CAS  Google Scholar 

  19. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356(8):830–40.

    Article  PubMed  CAS  Google Scholar 

  20. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105(2):186–93.

    Article  PubMed  Google Scholar 

  21. Fukushima K, Javadi MS, Higuchi T, Lautamäki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med 2011;52(5):726–32.

    Article  PubMed  Google Scholar 

  22. Velazquez EJ, Lee KL, O’Connor CM, Oh JK, Bonow RO, Pohost GM, et al. The rationale and design of the Surgical Treatment for Ischemic Heart Failure (STICH) trial. J Thorac Cardiovasc Surg 2007;134(6):1540–7.

    Article  PubMed  Google Scholar 

  23. Bax M, de Winter RJ, Schotborgh CE, Koch KT, Meuwissen M, Voskuil M, et al. Short- and long-term recovery of left ventricular function predicted at the time of primary percutaneous coronary intervention in anterior myocardial infarction. J Am Coll Cardiol 2004;43(4):534–41.

    Article  PubMed  Google Scholar 

  24. Prati F, Petronio S, van Boven AJ, Tendera M, De Luca L, de Belder MA, et al. Evaluation of infarct-related coronary artery patency and microcirculatory function after facilitated percutaneous primary coronary angioplasty: the FINESSE-ANGIO (Facilitated Intervention With Enhanced Reperfusion Speed to Stop Events-Angiographic) study. JACC Cardiovasc Interv 2010;3(12):1284–91.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riemer H. J. A. Slart.

Additional information

René A. Tio and Riemer H. J. A. Slart contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juárez-Orozco, L.E., Glauche, J., Alexanderson, E. et al. Myocardial perfusion reserve in spared myocardium: correlation with infarct size and left ventricular ejection fraction. Eur J Nucl Med Mol Imaging 40, 1148–1154 (2013). https://doi.org/10.1007/s00259-013-2394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2394-y

Keywords

Navigation