Skip to main content

Advertisement

Log in

Distinct patterns of medial temporal impairment in degenerative dementia: a brain SPECT perfusion study in Alzheimer’s disease and frontotemporal dementia

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Medial temporal impairment can be detected clinically and by morphological imaging during Alzheimer’s disease (AD), but the existence of a functional impairment in this area seems to be less well established. Yet such functional impairment is classically found in other degenerative cortical dementias, such as the frontal variant of frontotemporal dementia (fv-FTD). The aim of this study was to characterize and compare brain SPECT perfusion of the medial temporal lobe in AD and fv-FTD.

Methods

Voxel-based comparisons were performed using SPM8 between cerebral SPECT images from 85 AD patients, 25 fv-FTD patients and 12 healthy controls at the whole-brain level and the medial temporal lobe level using a region of interest approach (p < 0.001, corrected for the cluster).

Results

In the free and cued selective reminding test, used to evaluate medial temporal memory function, AD patients had significantly lower scores than the fv-FTD patients (p < 0.005). AD and fv-FTD patients showed hypoperfused medial temporal structures in comparison to normal controls. However, fv-FTD patients had more pronounced hypoperfusion in this area, with a different topography, more anterior and more parahippocampal.

Conclusion

These results show that medial temporal hypoperfusion can be detected in degenerative dementias by SPECT. Paradoxically, the hypoperfusion is more severe in fv-FTD than in AD patients, even though the mnesic profile of AD is more altered, suggesting the existence of inefficient compensatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belmin J, Péquignot R, Konrat C, Pariel-Madjlessi S. Prise en charge de la maladie d’Alzheimer. Presse Med. 2007;36:1500–10.

    Article  PubMed  Google Scholar 

  2. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–56.

    Article  CAS  Google Scholar 

  3. Gomez-Isla T, Price TL, McKeel DW, Morris JC, Growdon JH, Hyman BT. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci. 1997;16:4491–500.

    Google Scholar 

  4. Duyckaerts C, Colle MA, Dessi F, Grignon Y, Piette F, Hauw JJ. The progression of the lesions in Alzheimer disease: insights from a prospective clinicopathological study. J Neural Transm Suppl. 1998;53:119–26.

    Article  PubMed  CAS  Google Scholar 

  5. Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, McDonald B, et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia. 1996;7:76–81.

    PubMed  CAS  Google Scholar 

  6. Squire LR, Stark CEL, Clark RE. The medial temporal lobe. Annu Rev Neurosci. 2004;27:279–306.

    Article  PubMed  CAS  Google Scholar 

  7. Spiers HJ, Maguire EA, Burgess N. Hippocampal amnesia. Neurocase. 2001;7:357–82.

    Article  PubMed  CAS  Google Scholar 

  8. Van der Linden M, Coyette F, Poitrenaud J, Kalafat M, Calicis F, Wyns C, et al. L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16). In: Van der Linden M, editor. L’évaluation des troubles de la mémoire. Marseille: Solal; 2004. p. 25–48.

    Google Scholar 

  9. de Leon MJ, Golomb J, George AE, Convit A, Tarshish CY, McRae T, et al. The radiologic prediction of Alzheimer’s disease: the atrophic hippocampal formation. Am J Neuroradiol AJNR. 1993;14:897–906.

    Google Scholar 

  10. Baron JC, Chételat G, Desganges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage. 2001;14:298–309.

    Article  PubMed  CAS  Google Scholar 

  11. Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet. 1994;344:895.

    Article  PubMed  CAS  Google Scholar 

  12. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42:85–94.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson KA, Jones BL, Holman JA, Becker JA, Spiers PA, Satlin A, et al. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology. 1998;50:1563–71.

    Article  PubMed  CAS  Google Scholar 

  14. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, et al. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med. 2000;41:1155–62.

    PubMed  CAS  Google Scholar 

  15. Matsuda H, Kanetaka H, Ohnishi T, Asada T, Imabayashi E, Nakano S, et al. Brain SPET abnormalities in Alzheimer’s disease before and after atrophy correction. Eur J Nucl Med Mol Imaging. 2002;29:1502–5.

    Article  PubMed  CAS  Google Scholar 

  16. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.

    Article  PubMed  CAS  Google Scholar 

  17. Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.

    Article  PubMed  Google Scholar 

  18. Chételat G, Desgranges B, Eustache F. Brain profile of hypometabolism in early Alzheimer’s disease: relationships with cognitive deficits and atrophy. Rev Neurol. 2006;162:945–51.

    Article  PubMed  Google Scholar 

  19. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34:939–44.

    Article  PubMed  CAS  Google Scholar 

  20. Neary D, Snowden JS, Mann D. Frontotemporal dementia. Lancet Neurol. 2005;4:771–80.

    Article  PubMed  Google Scholar 

  21. Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131:732–46.

    Article  PubMed  Google Scholar 

  22. Deloche G, Hannequin D. Test de dénomination oral d’images, DO 80. Paris: Edition du Centre de psychologie appliquée; 1997.

    Google Scholar 

  23. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activation in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    Article  PubMed  CAS  Google Scholar 

  24. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19:1233–9.

    Article  PubMed  Google Scholar 

  25. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–22.

    Article  PubMed  Google Scholar 

  26. Delacourte A, Campion D, Davous P. Maladie d’Alzheimer. EMC (Elsevier Masson SAS, Paris) Neurologie; 2007. 17-056-A-15.

  27. Deramecourt V, Lebert F, Pasquier F. Démences frontotemporales. EMC (Elsevier Masson SAS, Paris) Neurologie; 2007. 17-057-A-30.

  28. Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD. Neurology. 2007;69:1859–67.

    Article  PubMed  CAS  Google Scholar 

  29. Derouesné C, Lacomblez L. Sémiologie des troubles de la mémoire. EMC (Elsevier Masson SAS, Paris) Psychiatrie; 2007. 37-115-A-10.

  30. Le Ber I, Guedj E, Gabelle A, Verpillat P, Volteau M, Thomas-Anterion C, et al. Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain. 2006;129:3051–65.

    Article  PubMed  Google Scholar 

  31. Van de Pol LA, Hensel A, Van der Flier WM, Visser PJ, Pijnenburg YAL, Barkhof F, et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. Neurol Neurosurg Psychiatr. 2006;77:439–42.

    Article  Google Scholar 

  32. Mayeux R. Alzheimer’s disease: epidemiology. Handb Clin Neurol. 2008;89:195–205.

    Article  PubMed  Google Scholar 

  33. Bornebroek M, Breteler M. Epidemiology of non-AD dementias. Clin Neurosci Res. 2004;3:349–61.

    Article  Google Scholar 

  34. Kennedy PJ, Shapiro ML. Retrieving memories via internal concept requires the hippocampus. J Neurosci. 2004;24:6979–85.

    Article  PubMed  CAS  Google Scholar 

  35. Tounsi H, Deweer B, Ergis AM, Van Der Linden M, Pillon B, Michon A, et al. Sensitivity to semantic cuing: an index of episodic memory dysfunction in early Alzheimer disease. Alzheimer Dis Assoc Disord. 1999;13:38–46.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez G, Vitali P, Calvini P, Bordoni C, Girtler N, Taddei G, et al. Hippocampal perfusion in mild Alzheimer’s disease. Psychiatr Res. 2000;100:65–74.

    Article  CAS  Google Scholar 

  37. Nebu A, Ikeda M, Fukuhara R, Komori K, Maki N, Hokoishi K, et al. Utility of (99m)Tc-HM-PAO SPECT hippocampal image to diagnose early stages of Alzheimer’s disease using semiquantitative analysis. Dement Geriatr Cogn Disord. 2001;12:153–7.

    Article  PubMed  CAS  Google Scholar 

  38. Elgh E, Sundstrom T, Nasman B, Ahlstrom R, Nyberg L. Memory functions and rCBF (99m)Tc-HMPAO SPET: developing diagnostics in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2002;29:1140–8.

    Article  PubMed  CAS  Google Scholar 

  39. Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage. 2008;42:1267–74.

    Article  PubMed  Google Scholar 

  40. Laakso MP, Frisoni GB, Könönen M, Mikkonen M, Beltramello A, Geroldi C, et al. Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s disease: a morphometric MRI study. Biol Psychiatry. 2000;47:1056–63.

    Article  PubMed  CAS  Google Scholar 

  41. Consensus report of the Working Group on: "Molecular and Biochemical Markers of Alzheimer’s Disease". The Ronald and Nancy Reagan Research Institute on Aging Working Group. Neurobiol Aging. 1998;19:109–16.

    Google Scholar 

  42. McNeill R, Sare GM, Manoharan M, Testa HJ, Mann DMA, Neary D, et al. Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2007;78:350–5.

    Article  PubMed  CAS  Google Scholar 

  43. Dougall NJ, Bruggink S, Ebmeier KP. Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia. Am J Geriatr Psychiatr. 2004;12:554–70.

    Google Scholar 

  44. Bonte FJ, Harris TS, Roney CA, Hynan LS. Differential diagnosis between Alzheimer’s and frontotemporal disease by the posterior cingulated sign. J Nucl Med. 2004;45:771–4.

    PubMed  Google Scholar 

  45. Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med. 2002;43:304–11.

    PubMed  Google Scholar 

  46. Caroli A, Geroldi C, Nobili F, Barnden LR, Guerra UP, Bonetti M, et al. Functional compensation in incipient Alzheimer’s disease. Neurobiol Aging. 2010;31:387–97.

    Article  PubMed  CAS  Google Scholar 

  47. Chételat G, Desgranges B, Landeau B, Mezenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain. 2008;131:60–71.

    Article  PubMed  Google Scholar 

  48. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343:450–6.

    Article  PubMed  CAS  Google Scholar 

  49. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65:404–11.

    Article  PubMed  CAS  Google Scholar 

  50. Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ranjeva JP, et al. Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation? Eur J Nucl Med Mol Imaging. 2009;36:1101–12.

    Article  PubMed  Google Scholar 

  51. Broe M, Hodges JR, Schofield E, Shepherd CE, Kril JJ, Halliday GM. Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology. 2003;60:1005–11.

    Article  PubMed  CAS  Google Scholar 

  52. Thal DR, Rüb U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.

    Article  PubMed  Google Scholar 

  53. Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127:2214–20.

    Article  PubMed  Google Scholar 

  54. Araque A, Sanzgiri RP, Parpura V, Haydon PG. Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol. 1999;77:699–706.

    Article  PubMed  CAS  Google Scholar 

  55. Libby LA, Ekstrom AD, Ragland JD, Ranganath C. Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J Neurosci. 2012;32:6550–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Funding

This work was funded by APHM (PHRC 2007/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guedj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 29 kb)

Online Resource 2

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 26 kb)

Online Resource 3

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 26 kb)

Online Resource 4

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 27 kb)

Online Resource 5

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 26 kb)

Online Resource 6

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 25 kb)

Online Resource 7

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 24 kb)

Online Resource 8

Talairach coordinates of significant cerebral cortical hypoperfusions (p < 0.001 for the voxel, uncorrected) in AD patients in comparison to the healthy subjects. Results from SPM8 are listed in decreasing order of peak T-score value, k values represent the number of significant voxels in the particular cluster. (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basely, M., Ceccaldi, M., Boyer, L. et al. Distinct patterns of medial temporal impairment in degenerative dementia: a brain SPECT perfusion study in Alzheimer’s disease and frontotemporal dementia. Eur J Nucl Med Mol Imaging 40, 932–942 (2013). https://doi.org/10.1007/s00259-013-2389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2389-8

Keywords

Navigation