Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

Review Article



The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer.


Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer.


Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93–96 %), specificity 80 % (95 % CI 78–82 %), positive likelihood ratio 4.63 (95 % CI 3.13–6.85), negative likelihood ratio 0.08 (95 % CI 0.05–0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68–120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80–88 %) and 88 % (95 % CI 81–92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI.


BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high.


Breast neoplasm Breast-specific gamma imaging Mammography Meta-analysis 


  1. 1.
    Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353(17):1784–92. doi:10.1056/NEJMoa050518.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosenberg RD, Hunt WC, Williamson MR, Gilliland FD, Wiest PW, Kelsey CA, et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology. 1998;209(2):511–8.PubMedGoogle Scholar
  3. 3.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36. doi:10.1056/NEJMoa062790.PubMedCrossRefGoogle Scholar
  4. 4.
    Barlow WE, White E, Ballard-Barbash R, Vacek PM, Titus-Ernstoff L, Carney PA, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer I. 2006;98(17):1204–14. doi:10.1093/jnci/djj331.CrossRefGoogle Scholar
  5. 5.
    Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis(2-methoxyisobutylisonitrile)-technetium-99 m by human carcinoma cell lines in vitro. Cancer Res. 1990;50(7):2198–202.PubMedGoogle Scholar
  6. 6.
    Sharma S, Sharma MC, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis. Histopathology. 2005;46(5):481–9. doi:10.1111/j.1365-2559.2005.02142.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Brem RF, Schoonjans JM, Kieper DA, Majewski S, Goodman S, Civelek C. High-resolution scintimammography: a pilot study. J Nucl Med. 2002;43(7):909–15.PubMedGoogle Scholar
  8. 8.
    Spanu A, Cottu P, Manca A, Chessa F, Sanna D, Madeddu G. Scintimammography with dedicated breast camera in unifocal and multifocal/multicentric primary breast cancer detection: a comparative study with SPECT. Int J Oncol. 2007;31(2):369–77.PubMedGoogle Scholar
  9. 9.
    Hruskaa CB, O’Connor MK. Quantification of lesion size, depth, and uptake using a dual-head molecular breast imaging system. Med Phys. 2008;35(4):1365–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25. doi:10.1186/1471-2288-3-25.PubMedCrossRefGoogle Scholar
  11. 11.
    Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, et al. Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med. 1994;120(8):667–76.PubMedGoogle Scholar
  12. 12.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.PubMedCrossRefGoogle Scholar
  13. 13.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med. 2000;19(24):3417–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer JE, Bachmann LM, Jaeschke R. A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med. 2003;29(7):1043–51. doi:10.1007/s00134-003-1761-8.PubMedCrossRefGoogle Scholar
  16. 16.
    Jaeschke R, Guyatt GH, Sackett DL. Users’ guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA. 1994;271(9):703–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56(11):1129–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58(10):982–90. doi:10.1016/j.jclinepi.2005.02.022.PubMedCrossRefGoogle Scholar
  19. 19.
    Moses LE, Shapiro D, Littenberg B. Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations. Stat Med. 1993;12(14):1293–316.PubMedCrossRefGoogle Scholar
  20. 20.
    Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93. doi:10.1016/j.jclinepi.2005.01.016.PubMedCrossRefGoogle Scholar
  21. 21.
    Coover LR, Caravaglia G, Kuhn P. Scintimammography with dedicated breast camera detects and localizes occult carcinoma. J Nucl Med. 2004;45(4):553–8.PubMedGoogle Scholar
  22. 22.
    Brem RF, Rapelyea JA, Zisman G, Mohtashemi K, Raub J, Teal CB, et al. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. 2005;237(1):274–80. doi:10.1148/radiol.2371040758.PubMedCrossRefGoogle Scholar
  23. 23.
    Schillaci O, Cossu E, Romano P, Sanso C, Danieli R, Granai AV, et al. High-resolution gamma-camera for molecular breast imaging: first clinical results. Phys Med. 2006;21 Suppl 1:121–4. doi:10.1016/S1120-1797(06)80042-6.PubMedCrossRefGoogle Scholar
  24. 24.
    Brem RF, Fishman M, Rapelyea JA. Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: a comparative study. Acad Radiol. 2007;14(8):945–50. doi:10.1016/j.acra.2007.04.004.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Connor MK, Phillips SW, Hruska CB, Rhodes DJ, Collins DA. Molecular breast imaging: advantages and limitations of a scintimammographic technique in patients with small breast tumors. Breast J. 2007;13(1):3–11. doi:10.1111/j.1524-4741.2006.00356.x.PubMedCrossRefGoogle Scholar
  26. 26.
    Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V. Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247(3):651–7. doi:10.1148/radiol.2473061678.PubMedCrossRefGoogle Scholar
  27. 27.
    Hruska CB, Phillips SW, Whaley DH, Rhodes DJ, O’Connor MK. Molecular breast imaging: use of a dual-head dedicated gamma camera to detect small breast tumors. AJR Am J Roentgenol. 2008;191(6):1805–15. doi:10.2214/AJR.07.3693.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou M, Johnson N, Blanchard D, Bryn S, Nelson J. Real-world application of breast-specific gamma imaging, initial experience at a community breast center and its potential impact on clinical care. Am J Surg. 2008;195(5):631–5. doi:10.1016/j.amjsurg.2008.01.006. discussion 5.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou M, Johnson N, Gruner S, Ecklund GW, Meunier P, Bryn S, et al. Clinical utility of breast-specific gamma imaging for evaluating disease extent in the newly diagnosed breast cancer patient. Am J Surg. 2009;197(2):159–63. doi:10.1016/j.amjsurg.2008.10.002.PubMedCrossRefGoogle Scholar
  30. 30.
    Killelea BK, Gillego A, Kirstein LJ, Asad J, Shpilko M, Shah A, et al. George Peters Award: How does breast-specific gamma imaging affect the management of patients with newly diagnosed breast cancer? Am J Surg. 2009;198(4):470–4. doi:10.1016/j.amjsurg.2009.06.016.PubMedCrossRefGoogle Scholar
  31. 31.
    Brem RF, Shahan C, Rapleyea JA, Donnelly CA, Rechtman LR, Kidwell AB, et al. Detection of occult foci of breast cancer using breast-specific gamma imaging in women with one mammographic or clinically suspicious breast lesion. Acad Radiol. 2010;17(6):735–43. doi:10.1016/j.acra.2010.01.017.PubMedCrossRefGoogle Scholar
  32. 32.
    Kessler R, Sutcliffe JB, Bell L, Bradley YC, Anderson S, Banks KP. Negative predictive value of breast-specific gamma imaging in low suspicion breast lesions: a potential means for reducing benign biopsies. Breast J. 2011;17(3):319–21. doi:10.1111/j.1524-4741.2011.01077.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Siegal E, Angelakis E, Morris P, Pinkus E. Breast molecular imaging: a retrospective review of one institutions experience with this modality and analysis of its potential role in breast imaging decision making. Breast J. 2012;18(2):111–7. doi:10.1111/j.1524-4741.2011.01214.x.PubMedCrossRefGoogle Scholar
  34. 34.
    Weigert JM, Bertrand ML, Lanzkowsky L, Stern LH, Kieper DA. Results of a multicenter patient registry to determine the clinical impact of breast-specific gamma imaging, a molecular breast imaging technique. AJR Am J Roentgenol. 2012;198(1):W69–75. doi:10.2214/AJR.10.6105.PubMedCrossRefGoogle Scholar
  35. 35.
    Keto JL, Kirstein L, Sanchez DP, Fulop T, McPartland L, Cohen I, et al. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: a prospective head-to-head trial. Ann Surg Oncol. 2012;19(1):249–52. doi:10.1245/s10434-011-1848-3.PubMedCrossRefGoogle Scholar
  36. 36.
    Spanu A, Sanna D, Chessa F, Manca A, Cottu P, Fancellu A, et al. The clinical impact of breast scintigraphy acquired with a breast specific gamma-camera (BSGC) in the diagnosis of breast cancer: incremental value versus mammography. Int J Oncol. 2012;41(2):483–9. doi:10.3892/ijo.2012.1495.PubMedGoogle Scholar
  37. 37.
    Spanu A, Sanna D, Chessa F, Cottu P, Manca A, Madeddu G. Breast scintigraphy with breast-specific γ-camera in the detection of ductal carcinoma in situ: a correlation with mammography and histologic subtype. J Nucl Med. 2012;53(10):1528–33. doi:10.2967/jnumed.112.103010.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee A, Chang J, Lim W, Kim BS, Lee JE, Cha ES et al. Effectiveness of breast-specific gamma imaging (BSGI) for breast cancer in Korea: a comparative study. Breast J. 2012;18(5):453–8. doi:10.1111/j.1524-4741.2012.01280.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim BS, Moon BI, Cha ES. A comparative study of breast-specific gamma imaging with the conventional imaging modality in breast cancer patients with dense breasts. Ann Nucl Med. 2012. doi:10.1007/s12149-012-0649-5.
  40. 40.
    Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63(1):181–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Ernster VL, Ballard-Barbash R, Barlow WE, Zheng Y, Weaver DL, Cutter G, et al. Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer I. 2002;94(20):1546–54.CrossRefGoogle Scholar
  42. 42.
    Ernster VL, Barclay J. Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. J Natl Cancer Inst Monogr. 1997;22:151–6.PubMedGoogle Scholar
  43. 43.
    Barreau B, de Mascarel I, Feuga C, MacGrogan G, Dilhuydy MH, Picot V, et al. Mammography of ductal carcinoma in situ of the breast: review of 909 cases with radiographic-pathologic correlations. Eur J Radiol. 2005;54(1):55–61. doi:10.1016/j.ejrad.2004.11.019.PubMedCrossRefGoogle Scholar
  44. 44.
    Dershaw DD, Abramson A, Kinne DW. Ductal carcinoma in situ: mammographic findings and clinical implications. Radiology. 1989;170(2):411–5.PubMedGoogle Scholar
  45. 45.
    Menell JH, Morris EA, Dershaw DD, Abramson AF, Brogi E, Liberman L. Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Breast J. 2005;11(6):382–90. doi:10.1111/j.1075-122X.2005.00121.x.PubMedCrossRefGoogle Scholar
  46. 46.
    Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233(3):830–49. doi:10.1148/radiol.2333031484.PubMedCrossRefGoogle Scholar
  47. 47.
    Sickles EA. The subtle and atypical mammographic features of invasive lobular carcinoma. Radiology. 1991;178(1):25–6.PubMedGoogle Scholar
  48. 48.
    Krecke KN, Gisvold JJ. Invasive lobular carcinoma of the breast: mammographic findings and extent of disease at diagnosis in 184 patients. AJR Am J Roentgenol. 1993;161(5):957–60.PubMedGoogle Scholar
  49. 49.
    Uchiyama N, Miyakawa K, Moriyama N, Kumazaki T. Radiographic features of invasive lobular carcinoma of the breast. Radiat Med. 2001;19(1):19–25.PubMedGoogle Scholar
  50. 50.
    Brem RF, Ioffe M, Rapelyea JA, Yost KG, Weigert JM, Bertrand ML, et al. Invasive lobular carcinoma: detection with mammography, sonography, MRI, and breast-specific gamma imaging. AJR Am J Roentgenol. 2009;192(2):379–83. doi:10.2214/AJR.07.3827.PubMedCrossRefGoogle Scholar
  51. 51.
    Ling CM, Coffey CM, Rapelyea JA, Torrente J, Teal CB, McSwain AP, et al. Breast-specific gamma imaging in the detection of atypical ductal hyperplasia and lobular neoplasia. Acad Radiol. 2012;19(6):661–6. doi:10.1016/j.acra.2012.02.008.PubMedCrossRefGoogle Scholar
  52. 52.
    Spanu A, Farris A, Chessa F, Sanna D, Pittalis M, Manca A, et al. Planar scintimammography and SPECT in neoadjuvant chemo or hormonotherapy response evaluation in locally advanced primary breast cancer. Int J Oncol. 2008;32(6):1275–83.PubMedGoogle Scholar
  53. 53.
    O’Connor MK, Li H, Rhodes DJ, Hruska CB, Clancy CB, Vetter RJ. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast. Med Phys. 2010;37(12):6187–98.PubMedCrossRefGoogle Scholar
  54. 54.
    Rhodes DJ, O’Connor MK, Phillips SW, Smith RL, Collins DA. Molecular breast imaging: a new technique using technetium Tc 99m scintimammography to detect small tumors of the breast. Mayo Clinic Proc. 2005;80(1):24–30. doi:10.1016/S0025-6196(11)62953-4.Google Scholar
  55. 55.
    Dibble SL, Israel J, Nussey B, Sayre JW, Brenner RJ, Sickles EA. Mammography with breast cushions. Womens Health Issues. 2005;15(2):55–63. doi:10.1016/j.whi.2004.12.001.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim BS. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: a comparative study with MRI. Ann Nucl Med. 2012;26(2):131–7. doi:10.1007/s12149-011-0544-5.PubMedCrossRefGoogle Scholar
  57. 57.
    Goldsmith SJ, Parsons W, Guiberteau MJ, Stern LH, Lanzkowsky L, Weigert J, et al. SNM practice guideline for breast scintigraphy with breast-specific gamma-cameras 1.0. J Nucl Med Technol. 2010;38(4):219–24. doi:10.2967/jnmt.110.082271.PubMedCrossRefGoogle Scholar
  58. 58.
    Conners AL, Hruska CB, Tortorelli CL, Maxwell RW, Rhodes DJ, Boughey JC, et al. Lexicon for standardized interpretation of gamma camera molecular breast imaging: observer agreement and diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2012;39(6):971–82. doi:10.1007/s00259-011-2054-z.PubMedCrossRefGoogle Scholar
  59. 59.
    Spanu A, Chessa F, Sanna D, Cottu P, Manca A, Nuvoli S, et al. Breast cancer axillary lymph node metastasis detection by a high-resolution dedicated breast camera: a comparative study with SPECT and pinhole SPECT. Cancer Biother Radiopharm. 2007;22(6):799–811. doi:10.1089/cbr.2007.367.PubMedCrossRefGoogle Scholar
  60. 60.
    Jones EA, Phan TD, Johnson NM, Blanchard DA. A protocol for imaging axillary lymph nodes in patients undergoing breast-specific gamma-imaging. J Nucl Med Technol. 2010;38(1):28–31. doi:10.2967/jnmt.109.062711.PubMedCrossRefGoogle Scholar
  61. 61.
    Welch BL, Brem R, Black R, Majewski S. Quality assurance procedure for a gamma guided stereotactic breast biopsy system. Phys Med. 2006;21 Suppl 1:102–5. doi:10.1016/S1120-1797(06)80037-2.PubMedCrossRefGoogle Scholar
  62. 62.
    Rhodes DJ, Hruska CB, Phillips SW, Whaley DH, O’Connor MK. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology. 2011;258(1):106–18. doi:10.1148/radiol.10100625.PubMedCrossRefGoogle Scholar
  63. 63.
    Hruska CB, Weinmann AL, O’Connor MK. Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part I. Evaluation in phantoms. Med Phys. 2012;39(6):3466–75. doi:10.1118/1.4718665.PubMedCrossRefGoogle Scholar
  64. 64.
    Hruska CB, Weinmann AL, Tello Skjerseth CM, Wagenaar EM, Conners AL, Tortorelli CL, et al. Proof of concept for low-dose molecular breast imaging with a dual-head CZT gamma camera. Part II. Evaluation in patients. Med Phys. 2012;39(6):3476–83. doi:10.1118/1.4719959.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Breast Surgery of Guangxi Cancer HospitalAffiliated Cancer Hospital of Guangxi Medical UniversityNanningPeople’s Republic of China

Personalised recommendations