Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease

  • David Garcia-Garcia
  • Pedro Clavero
  • Carmen Gasca Salas
  • Isabel Lamet
  • Javier Arbizu
  • Rafael Gonzalez-Redondo
  • Jose A. Obeso
  • Maria C. Rodriguez-Oroz
Original Article

Abstract

Purpose

Patients with Parkinson’s disease (PD) may have normal cognition, mild cognitive impairment (MCI) or dementia. We investigated differences in cerebral metabolism associated with these three cognitive states and the relationship between metabolism and cognitive dysfunction.

Methods

FDG PET and a battery of neuropsychological tests were used to study PD patients with dementia (n = 19), MCI (n = 28) and normal cognition (n = 21), and control subjects (n = 20). Regional glucose metabolism in patients and controls was analysed using statistical parametric mapping (SPM8) corrected for age, motor severity and depression. Correlations between the mini-mental state examination score and Z-score values of the different cognitive domains with respect to cerebral FDG uptake were assessed using SPM8.

Results

PD patients with MCI (PD-MCI patients) exhibited decreased FDG uptake in the frontal lobe, and to a lesser extent in parietal areas compared with cognitively normal patients. Patients with dementia showed reduced metabolism in the parietal, occipital and temporal areas and a less extensive reduction in the frontal lobe compared with PD-MCI patients, while widespread hypometabolism was seen in comparison with patients with normal cognition. PD-MCI patients exhibited reduced FDG uptake in the parietal and occipital lobes and in localized areas of the frontal and temporal lobes compared with controls, whereas patients with dementia showed a widespread reduction of cortical metabolism. Mini-mental state examination score correlated positively with metabolism in several lobes, executive function with metabolism in the parietooccipitotemporal junction and frontal lobe, memory with temporoparietal metabolism, visuospatial function with occipitoparietal and temporal metabolism, and language with frontal metabolism.

Conclusion

PD patients with MCI exhibited hypometabolism in several cortical regions compared with controls, and in the frontal and parietal regions compared with cognitively normal patients. Hypometabolism was higher in patients with dementia than in those with MCI, mainly in the posterior cortical areas where it was correlated with visuospatial, memory and executive functions.

Keywords

Parkinson’s disease Mild cognitive impairment PET Cerebral metabolism Dementia 

Supplementary material

259_2012_2198_MOESM1_ESM.docx (87 kb)
ESM 1(DOCX 87 kb)
259_2012_2198_MOESM2_ESM.doc (68 kb)
ESM 2(DOC 68 kb)
259_2012_2198_MOESM3_ESM.doc (100 kb)
ESM 3(DOC 99 kb)

References

  1. 1.
    Aarsland D, Zaccai J, Brayne C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov Disord. 2005;20(10):1255–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Caviness JN, Driver-Dunckley E, Connor DJ, Sabbagh MN, Hentz JG, Noble B, et al. Defining mild cognitive impairment in Parkinson’s disease. Mov Disord. 2007;22(9):1272–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Foltynie T, Brayne CE, Robbins TW, Barker RA. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain. 2004;127(Pt 3):550–60.PubMedGoogle Scholar
  5. 5.
    Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, et al. 2.MDS Task Force on mild cognitive impairment in Parkinson's disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–24.PubMedCrossRefGoogle Scholar
  6. 6.
    Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130(Pt 7):1787–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord. 2006;21(9):1343–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy G, Jacobs DM, Tang MX, Cote LJ, Louis ED, Alfaro B, et al. Memory and executive function impairment predict dementia in Parkinson’s disease. Mov Disord. 2002;17(6):1221–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Woods SP, Troster AI. Prodromal frontal/executive dysfunction predicts incident dementia in Parkinson’s disease. J Int Neuropsychol Soc. 2003;9(1):17–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(Pt 11):2958–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Pagonabarraga J, Kulisevsky J, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23(7):998–1005.PubMedCrossRefGoogle Scholar
  12. 12.
    Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52(6):848–55. doi:10.2967/jnumed.111.089946.PubMedCrossRefGoogle Scholar
  13. 13.
    Apostolova LG, Beyer M, Green AE, Hwang KS, Morra JH, Chou YY, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia. Mov Disord. 2010;25(6):687–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage. 2007;34(2):714–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, et al. Cortical hypometabolism assessed by a metabolic ratio in Parkinson’s disease primarily reflects cognitive deterioration-[18F]FDG-PET. Mov Disord. 2009;24(10):1504–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Peppard RF, Martin WR, Carr GD, Grochowski E, Schulzer M, Guttman M, et al. Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch Neurol. 1992;49(12):1262–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Yong SW, Yoon JK, An YS, Lee PH. A comparison of cerebral glucose metabolism in Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies. Eur J Neurol. 2007;14(12):1357–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Hosokai Y, Nishio Y, Hirayama K, Takeda A, Ishioka T, Sawada Y, et al. Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment. Mov Disord. 2009;24(6):854–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Pappata S, Santangelo G, Aarsland D, Vicidomini C, Longo K, Bronnick K, et al. Mild cognitive impairment in drug-naive patients with PD is associated with cerebral hypometabolism. Neurology. 2011;77(14):1357–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Lyoo CH, Jeong Y, Ryu YH, Rinne JO, Lee MS. Cerebral glucose metabolism of Parkinson’s disease patients with mild cognitive impairment. Eur Neurol. 2010;64(2):65–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Hobson P, Meara J. Risk and incidence of dementia in a cohort of older subjects with Parkinson’s disease in the United Kingdom. Mov Disord. 2004;19(9):1043–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.PubMedCrossRefGoogle Scholar
  25. 25.
    Teunisse S, Derix MM. The interview for deterioration in daily living activities in dementia: agreement between primary and secondary caregivers. Int Psychogeriatr. 1997;9 Suppl 1:155–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.PubMedCrossRefGoogle Scholar
  27. 27.
    Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, Lamet I, Pagonabarraga J, Toledo JB, et al. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24(10):1437–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Buschke H, Fuld PA. Evaluating storage, retention, and retrieval in disordered memory and learning. Neurology. 1974;(24):1019–1025Google Scholar
  29. 29.
    Parkin AJ, Java RI. Deterioration of frontal lobe function in normal aging: influences of fluid intelligence versus perceptual speed. Neuropsychology. 1999;13(4):539–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):1689–707.PubMedCrossRefGoogle Scholar
  31. 31.
    Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27(3):349–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Hooper PK, Meikle SR, Eberl S, Fulham MJ. Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies. J Nucl Med. 1996;37(1):128–36.PubMedGoogle Scholar
  33. 33.
    Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–51. doi:10.1016/j.neuroimage.2005.02.018.PubMedCrossRefGoogle Scholar
  34. 34.
    Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.PubMedCrossRefGoogle Scholar
  35. 35.
    Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18(2):192–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Maldjian JA, Laurienti PJ, Burdette JH. Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage. 2004;21(1):450–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr. 1995;19(4):541–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al. Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry. 2002;159(5):746–54.PubMedCrossRefGoogle Scholar
  41. 41.
    Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp. 2004;22(3):236–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Diwadkar VA, Carpenter PA, Just MA. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. Neuroimage. 2000;12(1):85–99.PubMedCrossRefGoogle Scholar
  44. 44.
    Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16(2):291–310PubMedCrossRefGoogle Scholar
  45. 45.
    Sauseng P, Klimesch W, Gruber W, Doppelmayr M, Stadler W, Schabus M. The interplay between theta and alpha oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neurosci Lett. 2002;324(2):121–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee PH, Yong SW, An YS. Changes in cerebral glucose metabolism in patients with Parkinson disease with dementia after cholinesterase inhibitor therapy. J Nucl Med. 2008;49(12):2006–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, et al. Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology. 2010;75(12):1062–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Derejko M, Slawek J, Wieczorek D, Brockhuis B, Dubaniewicz M, Lass P. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl Med Commun. 2006;27(12):945–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Melzer TR, Watts R, MacAskill MR, Pitcher TL, Livingston L, Keenan RJ, et al. Grey matter atrophy in cognitively impaired Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2012;83(2):188–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain. 2000;123(Pt 2):340–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol. 2007;6(10):926–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130(Pt 7):1834–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • David Garcia-Garcia
    • 1
    • 2
  • Pedro Clavero
    • 1
  • Carmen Gasca Salas
    • 1
    • 2
  • Isabel Lamet
    • 1
  • Javier Arbizu
    • 3
  • Rafael Gonzalez-Redondo
    • 1
    • 2
  • Jose A. Obeso
    • 1
    • 2
  • Maria C. Rodriguez-Oroz
    • 1
    • 2
    • 4
    • 5
  1. 1.Neurosciences Area, CIMA, Department of Neurology and Neurosurgery, Clinica Universidad de NavarraUniversity of NavarraPamplonaSpain
  2. 2.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  3. 3.Department of Nuclear Medicine, ClínicaUniversity of NavarraPamplonaSpain
  4. 4.Department of Neurology and NeuroscienceUniversity Hospital Donostia, BioDonostia Research InstituteSan SebastianSpain
  5. 5.Ikerbasque, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations