Kasper HU, Drebber U, Dries V, Dienes HP. Liver metastases: incidence and histogenesis. Z Gastroenterol 2005;43(10):1149–57.
PubMed
Article
Google Scholar
Wellner UF, Keck T, Brabletz T. Liver metastases: pathogenesis and oncogenesis. Chirurg 2010;81:551–6.
PubMed
Article
CAS
Google Scholar
Kuvshinoff B, Fong Y. Surgical therapy of liver metastases. Semin Oncol 2007;34:177–85.
PubMed
Article
Google Scholar
Hoffmann RT, Paprottka P, Jakobs TF, Trumm CG, Reiser MF. Arterial therapies of non-colorectal cancer metastases to the liver (from chemoembolization to radioembolization). Abdom Imaging 2011;36:671–6.
PubMed
Article
Google Scholar
Malik U, Mohiuddin M. External-beam radiotherapy in the management of liver metastases. Semin Oncol 2002;29:196–201.
PubMed
Article
Google Scholar
Van de Wiele C, Defreyne L, Peeters M, Lambert B. Yttrium-90 labelled resin microspheres for treatment of primary and secondary malignant liver tumors. Q J Nucl Med Mol Imaging 2009;53:317–24.
Google Scholar
Memon K, Lewandowski RJ, Kulik L, Riaz A, Mulcahy MF, Salem R. Radioembolization for primary and metastatic liver cancer. Semin Radiat Oncol 2011;21:294–302.
PubMed
Article
Google Scholar
Welsh JS, Kennedy AS, Thomadsen B. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int J Radiat Oncol Biol Phys 2006;66:S62–73.
PubMed
Article
CAS
Google Scholar
Wong CY, Savin M, Sherpa KM, Qing F, Campbell J, Gates VL, et al. Regional yttrium-90 microsphere treatment of surgically unresectable and chemotherapy-refractory metastatic liver carcinoma. Cancer Biother Radiopharm 2006;21:305–13.
PubMed
Article
CAS
Google Scholar
Salem R, Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Ibrahim S, et al. Technical aspects of radioembolization with 90Y microspheres. Tech Vasc Interv Radiol 2007;10:12–29.
PubMed
Article
Google Scholar
Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Nemcek Jr AA, Kulik L, et al. Radioembolization with 90Y microspheres: angiographic and technical considerations. Cardiovasc Intervent Radiol 2007;30:571–92.
PubMed
Article
Google Scholar
Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging 2011;55:168–97.
PubMed
CAS
Google Scholar
Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS, Gong Lo RH, et al. Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 2012;53:559–66.
PubMed
Article
CAS
Google Scholar
Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, et al. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results. J Nucl Med 2012;53:255–63.
PubMed
Article
CAS
Google Scholar
Lautt WW. Role and control of the hepatic artery. In: Lautt WW, editor. Hepatic circulation in health and disease. New York: Raven; 1981. p. 203–26.
Google Scholar
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009;89:1269–339.
PubMed
Article
CAS
Google Scholar
Rappaport AM. Hepatic blood flow: morphologic aspects and physiologic regulation. Int Rev Physiol 1980;21:1–63.
PubMed
CAS
Google Scholar
Greenway CV, Stark RD. Hepatic vascular bed. Physiol Rev 1971;51:23–65.
PubMed
CAS
Google Scholar
Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol 2010;16:6046–57.
PubMed
Article
Google Scholar
Taniguchi H, Oguro A, Takeuchi K, Miyata K, Takahashi T, Inaba T, et al. Difference in regional hepatic blood flow in liver segments—non-invasive measurement of regional hepatic arterial and portal blood flow in human by positron emission tomography with H2(15)O. Ann Nucl Med 1993;7:141–5.
PubMed
Article
CAS
Google Scholar
Oda M, Yokomori H, Han JY. Regulatory mechanisms of hepatic microcirculatory hemodynamics: hepatic arterial system. Clin Hemorheol Microcirc 2006;34:11–26.
PubMed
Google Scholar
Pannen BH. New insights into the regulation of hepatic blood flow after ischemia and reperfusion. Anesth Analg 2002;94:1448–57.
PubMed
CAS
Google Scholar
Ueno T, Bioulac-Sage P, Balabaud C, Rosenbaum J. Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat Rec A Discov Mol Cell Evol Biol 2004;280:868–73.
PubMed
Article
Google Scholar
Ezzat WR, Lautt WW. Hepatic arterial pressure-flow autoregulation is adenosine mediated. Am J Physiol 1987;252:H836–45.
PubMed
CAS
Google Scholar
Lautt WW. The 1995 Ciba-Geigy Award Lecture. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol 1996;74:223–33.
PubMed
Article
CAS
Google Scholar
Lautt WW. Hepatic vasculature: a conceptual review. Gastroenterology 1977;73:1163–9.
PubMed
CAS
Google Scholar
Krylova NV. Characteristics of microcirculation in experimental tumours. Bibl Anat 1969;10:301–3.
PubMed
CAS
Google Scholar
Mattsson J, Appelgren L, Hamberger B, Peterson HI. Adrenergic innervation of tumour blood vessels. Cancer Lett 1977;3:347–51.
Article
Google Scholar
Hafström L, Nobin A, Persson B, Sundqvist K. Effects of catecholamines on cardiovascular response and blood flow distribution to normal tissue and liver tumors in rats. Cancer Res 1980;40:481–5.
PubMed
Google Scholar
Wickersham JK, Barrett WP, Furukawa SB, Puffer HW, Warner NE. An evaluation of the response of the microvasculature in tumors in C3H mice to vasoactive drugs. Bibl Anat 1977;(15 Pt 1):291–3.
Cuenod C, Leconte I, Siauve N, Resten A, Dromain C, Poulet B, et al. Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 2001;218:556–61.
PubMed
CAS
Google Scholar
Hemingway DM, Cooke TG, Grime SJ, Nott DM, Jenkins SA. Changes in hepatic haemodynamics and hepatic perfusion index during the growth and development of hypovascular HSN sarcoma in rats. Br J Surg 1991;78:326–30.
PubMed
Article
CAS
Google Scholar
Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 1997;151:679–88.
PubMed
CAS
Google Scholar
Kruskal JB, Thomas P, Kane RA, Goldberg SN. Hepatic perfusion changes in mice livers with developing colorectal cancer metastases. Radiology 2004;231:482–90.
PubMed
Article
Google Scholar
Carter R, Anderson JH, Cooke TG, Baxter JN, Angerson WJ. Splanchnic blood flow changes in the presence of hepatic tumour: evidence of a humoral mediator. Br J Cancer 1994;69:1025–6.
PubMed
Article
CAS
Google Scholar
Sjövall S, Ahrén B, Bengmark S. Intermittent hepatic arterial or portal occlusion reduces liver tumor growth. J Surg Res 1991;50:146–9.
PubMed
Article
Google Scholar
Kan Z, Ivancev K, Lunderquist A, McCuskey PA, Wright KC, Wallace S, et al. In vivo microscopy of hepatic tumors in animal models: a dynamic investigation of blood supply to hepatic metastases. Radiology 1993;187:621–62.
PubMed
CAS
Google Scholar
Archer SG, Gray BN. Vascularization of small liver metastases. Br J Surg 1989;76:545–8.
PubMed
Article
CAS
Google Scholar
Haugeberg G, Strohmeyer T, Lierse W, Böcker W. The vascularization of liver metastases. Histological investigation of gelatine-injected liver specimens with special regard to the vascularization of micrometastases. J Cancer Res Clin Oncol 1988;114:415–9.
PubMed
Article
CAS
Google Scholar
Lin G, Lunderquist A, Hägerstrand I, Boijsen E. Postmortem examination of the blood supply and vascular pattern of small liver metastases in man. Surgery 1984;96:517–26.
PubMed
CAS
Google Scholar
Taylor I, Bennett R, Sherriff S. The blood supply of colorectal liver metastases. Br J Cancer 1978;38:749–56.
PubMed
Article
CAS
Google Scholar
Paris AL, Meissner WA, McDermott Jr WV. Histologic changes seen in the hepatic parenchyma and in metastatic nodules following hepatic dearterialization. J Surg Oncol 1982;19:114–8.
PubMed
Article
CAS
Google Scholar
Oktar SO, Yücel C, Demirogullari T, Uner A, Benekli M, Erbas G, et al. Doppler sonographic evaluation of hemodynamic changes in colorectal liver metastases relative to liver size. J Ultrasound Med 2006;25:575–82.
PubMed
Google Scholar
Shuman WP. Liver metastases from colorectal carcinoma: detection with Doppler US-guided measurements of liver blood flow—past, present, future. Radiology 1995;195:9–10.
PubMed
CAS
Google Scholar
Miles KA, Leggett DA, Kelley BB, Hayball MP, Sinnatamby R, Bunce I. In vivo assessment of neovascularization of liver metastases using perfusion CT. Br J Radiol 1998;71:276–81.
PubMed
CAS
Google Scholar
Flowerdew ADS, McLaren MI, Fleming JS, Britten AJ, Ackery DM, Birch SJ, et al. Liver tumour blood flow and responses to arterial embolization measured by dynamic hepatic scintigraphy. Br J Cancer 1987;55:269–73.
PubMed
Article
CAS
Google Scholar
Ueda H, Lio M, Kaihara S. Determination of regional pulmonary blood flow in various cardiopulmonary disorders. Study and application of macroaggregated albumin (MAA) labelled with I-131 (I). Jpn Heart J 1964;190:431–44.
PubMed
Article
CAS
Google Scholar
Taplin GV, Johnson DE, Dore EK, Kaplan HS. Suspensions of radioalbumin aggregates for photoscanning the liver, spleen, lung and other organs. J Nucl Med 1964;5:259–75.
PubMed
CAS
Google Scholar
Chandra R, Shamoun J, Braunstein P, DuHov OL. Clinical evaluation of an instant kit for preparation of 99mTc-MAA for lung scanning. J Nucl Med 1973;14:702–5.
PubMed
CAS
Google Scholar
Zamora PO, Rhodes BA. Imidazoles as well as thiolates in proteins bind technetium-99m. Bioconjug Chem 1992;3:493–8.
PubMed
Article
CAS
Google Scholar
Rudolph AM, Heymann MA. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res 1967;21:163–84.
PubMed
Article
CAS
Google Scholar
McDevitt DG, Nies AS. Simultaneous measurement of cardiac output and its distribution with microspheres in the rat. Cardiovasc Res 1976;10:494–8.
PubMed
Article
CAS
Google Scholar
Fähraeus R. Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefäßsystem. Klin Wochenschr 1928;7:100–6.
Article
Google Scholar
Segré G, Silberberg A. Radial particle displacements in Poiseuille flow of suspensions. Nature 1961;189:209–10.
Article
Google Scholar
Segré G, Silberberg A. Behaviour of macroscopic rigid spheres in Poiseuille flow. Parts 1 and 2. J Fluid Mech 1962;14:115–57.
Article
Google Scholar
Fung Y. Stochastic flow in capillary blood vessels. Microvasc Res 1973;5:34–48.
PubMed
Article
CAS
Google Scholar
Bayliss LE. The axial drift of the red cells when blood flows in a narrow tube. J Physiol 1959;149:593–613.
PubMed
CAS
Google Scholar
Ofjord ES, Clausen G, Aukland K. Skimming of microspheres in vitro: implications for measurement of intrarenal blood flow. Am J Physiol 1981;241:H342–7.
PubMed
CAS
Google Scholar
Yipintsoi T, Dobbs Jr WA, Scanlon PD, Knopp TJ, Bassingthwaighte JB. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 1973;33:573–87.
PubMed
Article
CAS
Google Scholar
Domenech RJ, Hoffman JI, Noble MI, Saunders KB, Henson JR, Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 1969;25:581–96.
PubMed
Article
CAS
Google Scholar
Katz MA, Blantz RC, Rector FC, Seldin DW. Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol 1971;220:1903–13.
PubMed
CAS
Google Scholar
Meade VM, Burton MA, Gray BN, Self GW. Distribution of different sized microspheres in experimental hepatic tumours. Eur J Cancer Clin Oncol 1987;23:37–41.
PubMed
Article
CAS
Google Scholar
Anderson JH, Angerson WJ, Willmott N, Kerr DJ, McArdle CS, Cooke TG. Regional delivery of microspheres to liver metastases: the effects of particle size and concentration on intrahepatic distribution. Br J Cancer 1991;64:1031–4.
PubMed
Article
CAS
Google Scholar
Civalleri D, Rollandi G, Simoni G, Mallarini G, Repetto M, Bonalumi U. Redistribution of arterial blood flow in metastases-bearing livers after infusion of degradable starch microspheres. Acta Chir Scand 1985;151:613–7.
PubMed
CAS
Google Scholar
Civalleri D, Scopinaro G, Simoni G, Claudiani F, Repetto M, DeCian F, et al. Starch microsphere-induced arterial flow redistribution after occlusion of replaced hepatic arteries in patients with liver metastases. Cancer 1986;58:2151–5.
PubMed
Article
CAS
Google Scholar
Harell GS, Corbet AB, Dickhoner WH, Bradley BR. The intraluminal distribution of 15-micrometer-diameter carbonized microspheres within arterial microvessels as determined by vital microscopy of the golden hamster cheek pouch. Microvasc Res 1979;18:384–402.
PubMed
Article
CAS
Google Scholar
da-Luz PL, Leite JJ, Barros LF, Dias-Neto A, Zanarco EL, Pileggi FJ. Experimental myocardial infarction: effect of methylprednisolone on myocardial blood flow after reperfusion. Braz J Med Biol Res 1982;15:355–60.
PubMed
CAS
Google Scholar
Reed Jr JH, Wood EH. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 1970;28:303–11.
PubMed
Google Scholar
Burton M, Gray B, Coletti A. Effect of angiotensin II on blood flow in the transplanted sheep squamous cell carcinoma. Eur J Cancer Clin Oncol 1988;24:1373–6.
PubMed
Article
CAS
Google Scholar
Sasaki Y, Imaoka S, Hasegawa Y, Nakano S, Ishikawa O, Ohigashi H, et al. Changes in distribution of hepatic blood flow induced by intra-arterial infusion of angiotensin II in human hepatic cancer. Cancer 1985;55:311–6.
PubMed
Article
CAS
Google Scholar
Hemingway DM, Angerson WJ, Anderson JH, Goldberg JA, McArdle CS, Cooke TG. Monitoring blood flow to colorectal liver metastases using laser Doppler flowmetry: the effect of angiotensin II. Br J Cancer 1992;66:958–60.
PubMed
Article
CAS
Google Scholar
Goldberg JA, Bradnam MS, Kerr DJ, Haughton DM, McKillop JH, Bessent RG, et al. Arteriovenous shunting of microspheres in patients with colorectal liver metastases: errors in assessment due to free pertechnetate, and the effect of angiotensin II. Nucl Med Commun 1987;8:1033–46.
PubMed
Article
CAS
Google Scholar
Ho S, Lau WY, Leung WT, Chan M, Chan KW, Johnson PJ, et al. Arteriovenous shunts in patients with hepatic tumors. J Nucl Med 1997;38:1201–5.
PubMed
CAS
Google Scholar
Chang D, Jenkins SA, Grime SJ, Nott DM, Cooke T. Increasing hepatic arterial flow to hypovascular hepatic tumors using degradable starch microspheres. Br J Cancer 1996;73:961–5.
PubMed
Article
CAS
Google Scholar
Ziessman HA, Thrall JH, Gyves W, Ensminger WD, Niederhuber JE, Tuscan M, et al. Quantitative hepatic arterial perfusion scintigraphy and starch microspheres in cancer chemotherapy. J Nucl Med 1983;24:871–5.
PubMed
CAS
Google Scholar
Bester L, Salem R. Reduction of arteriohepatovenous shunting by temporary balloon occlusion in patients undergoing radioembolization. J Vasc Interv Radiol 2007;18:1310–4.
PubMed
Article
Google Scholar
Roberson PL, Ten Haken RK, McShan DL, McKeever PE, Ensminger WD. Three-dimensional tumor dosimetry for hepatic yttrium-90-microsphere therapy. J Nucl Med 1992;33:735–8.
PubMed
CAS
Google Scholar
Campbell AM, Bailey IH, Burton MA. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys Med Biol 2001;46:487–98.
PubMed
Article
CAS
Google Scholar
Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 2008;13:21–6.
PubMed
Article
CAS
Google Scholar
Kunz M, Ibrahim S. Molecular responses to hypoxia in tumor cells. Mol Cancer 2003;2:23.
PubMed
Article
Google Scholar