Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease

  • Flavio Nobili
  • Dario Arnaldi
  • Claudio Campus
  • Michela Ferrara
  • Fabrizio De Carli
  • Andrea Brugnolo
  • Barbara Dessi
  • Nicola Girtler
  • Silvia Morbelli
  • Giovanni Abruzzese
  • Gianmario Sambuceti
  • Guido Rodriguez
Original Article

Abstract

Purpose

Subtle cognitive impairment is recognized in the first stages of Parkinson’s disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated.

Methods

Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side.

Results

Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH.

Conclusion

These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.

Keywords

Parkinson’s disease DAT SPECT Perfusion SPECT Neuropsychological assessment Cognition 

References

  1. 1.
    Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol 2010;9:1200–13.PubMedGoogle Scholar
  2. 2.
    Rinne JO, Portin R, Ruottinen H, Nurmi E, Bergman J, Haaparanta M, et al. Cognitive impairment and the brain dopaminergic system in Parkinson’s disease: [18F]fluorodopa positron emission tomographic study. Arch Neurol 2000;57:470–5.PubMedGoogle Scholar
  3. 3.
    Müller U, Wächter T, Barthel H, Reuter M, von Cramon DY. Striatal [123I]beta-CIT SPECT and prefrontal cognitive functions in Parkinson’s disease. J Neural Transm 2000;107:303–19.PubMedGoogle Scholar
  4. 4.
    Nobili F, Campus C, Arnaldi D, De Carli F, Cabassi G, Brugnolo A, et al. Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson’s disease patients: a [I-123]FP-CIT SPECT study. Mov Disord 2010;25:35–43.PubMedGoogle Scholar
  5. 5.
    Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage 2007;34:714–23.PubMedGoogle Scholar
  6. 6.
    Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008;70:1470–7.PubMedGoogle Scholar
  7. 7.
    Van Laere K, Santens P, Bosman T, De Reuck J, Mortelmans L, Dierckx R. Statistical parametric mapping of (99m)Tc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters. J Nucl Med 2004;45:933–42.PubMedGoogle Scholar
  8. 8.
    Firbank MJ, Colloby SJ, Burn DJ, McKeith IG, O’Brien JT. Regional cerebral blood flow in Parkinson’s disease with and without dementia. Neuroimage 2003;20:1309–19.PubMedGoogle Scholar
  9. 9.
    Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain 2007;130:1834–46.PubMedGoogle Scholar
  10. 10.
    Paschali A, Messinis L, Kargiotis O, Lakiotis V, Kefalopoulou Z, Constantoyannis C, et al. SPECT neuroimaging and neuropsychological functions in different stages of Parkinson’s disease. Eur J Nucl Med Mol Imaging 2010;37:1128–40.PubMedGoogle Scholar
  11. 11.
    Berti V, Polito C, Ramat S, Vanzi E, De Cristofaro MT, Pellicanò G, et al. Brain metabolic correlates of dopaminergic degeneration in de novo idiopathic Parkinson’s disease. Eur J Nucl Med Mol Imaging 2010;37:537–44.PubMedGoogle Scholar
  12. 12.
    Kaasinen V, Maguire RP, Hundemer HP, Leenders KL. Corticostriatal covariance patterns of 6-[18F]fluoro-L-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol 2006;253:340–8.PubMedGoogle Scholar
  13. 13.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33–9.PubMedGoogle Scholar
  14. 14.
    Katz S, Downs TD, Cash HR, Grotz RC. Progress in development of the index of ADL. Gerontologist 1970;10:20–30.PubMedGoogle Scholar
  15. 15.
    Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:179–86.PubMedGoogle Scholar
  16. 16.
    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001;32:1318–22.PubMedGoogle Scholar
  17. 17.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotransmission SPET using (123)I-labelled dopamine D(2) transporter ligands. Eur J Nucl Med Mol Imaging 2002;29:BP30–5.PubMedGoogle Scholar
  18. 18.
    Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, et al. European Association of Nuclear Medicine procedure guidelines for brain perfusion SPET using (99m)Tc-labelled radiopharmaceuticals. Eur J Nucl Med Mol Imaging 2002;29:BP36–42.PubMedGoogle Scholar
  19. 19.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedGoogle Scholar
  20. 20.
    Boccacci P, Bonetto P, Calvini P, Formiconi AR. A simple model for the efficient correction of collimator blur in 3D SPECT imaging. Inverse Problems 1999;15:907–30.Google Scholar
  21. 21.
    Calvini P, Rodriguez G, Inguglia F, Mignone A, Guerra UP, Nobili F. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging 2007;34:1240–53.PubMedGoogle Scholar
  22. 22.
    Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: when does the bilateral coordination of gait require attention? Exp Brain Res 2007;177:336–46.PubMedGoogle Scholar
  23. 23.
    Morbelli S, Rodriguez G, Mignone A, Altrinetti V, Brugnolo A, Piccardo A, et al. The need of appropriate brain SPECT templates for SPM comparisons. Q J Nucl Med Mol Imaging 2008;52:89–98.PubMedGoogle Scholar
  24. 24.
    Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005;65:1708–15.PubMedGoogle Scholar
  25. 25.
    Villain N, Desgranges B, Viader F, de la Sayette V, Mézenge F, Landeau B, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 2008;28:6174–81.PubMedGoogle Scholar
  26. 26.
    Murray ME, Senjem ML, Petersen RC, Hollman JH, Preboske GM, Weigand SD, et al. Functional impact of white matter hyperintensities in cognitively normal elderly subjects. Arch Neurol 2010;67:1379–85.PubMedGoogle Scholar
  27. 27.
    Jacobs HI, Visser PJ, Van Boxtel MPJ, Frisoni GB, Tsolaki M, Papapostolou P, et al. The association between white matter hyperintensities and executive decline in mild cognitive impairment is network dependent. Neurobiol Aging 2010 Aug 23. [Epub ahead of print]. PMID: 20739101.Google Scholar
  28. 28.
    Matsui H, Udaka F, Miyoshi T, Hara N, Tamura A, Oda M, et al. Frontal assessment battery and brain perfusion image in Parkinson’s disease. J Geriatr Psychiatry Neurol 2006;19:41–5.PubMedGoogle Scholar
  29. 29.
    Matsui H, Nishinaka K, Oda M, Niikawa H, Komatsu K, Kubori T, et al. Wisconsin Card Sorting Test in Parkinson’s disease: diffusion tensor imaging. Acta Neurol Scand 2007;116:108–12.PubMedGoogle Scholar
  30. 30.
    Collette F, Van der Linden M, Laureys S, Delfiore G, Degueldre C, Luxen A, et al. Exploring the unity and diversity of the neural substrates of executive functioning. Hum Brain Mapp 2005;25:409–23.PubMedGoogle Scholar
  31. 31.
    Nobili F, Brugnolo A, Calvini P, Copello F, De Leo C, Girtler N, et al. Resting SPECT-neuropsychology correlation in very mild Alzheimer’s disease. Clin Neurophysiol 2005;116:364–75.PubMedGoogle Scholar
  32. 32.
    Desgranges B, Baron J-C, de la Sayette V, Petit-Taboué M-C, Benali K, Landeau B, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998;121:611–31.PubMedGoogle Scholar
  33. 33.
    Cabeza R, Dolcos F, Prince SE, Rice HJ, Weissman DH, Nyberg L. Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia 2003;41:390–9.PubMedGoogle Scholar
  34. 34.
    Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, et al. The structural components of music perception. A functional anatomical study. Brain 1997;120:229–43.PubMedGoogle Scholar
  35. 35.
    Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RS, Dolan RJ. The mind’s eye—precuneus activation in memory-related imagery. Neuroimage 1995;2:195–200.PubMedGoogle Scholar
  36. 36.
    Nobili F, Abbruzzese G, Morbelli S, Marchese R, Girtler N, Dessi B, et al. Amnestic mild cognitive impairment in Parkinson’s disease: a brain perfusion SPECT study. Mov Disord 2009;24:414–21.PubMedGoogle Scholar
  37. 37.
    Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010;74:885–92.PubMedGoogle Scholar
  38. 38.
    Shimada H, Hirano S, Shinotoh H, Aotsuka A, Sato K, Tanaka N, et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 2009;73:273–8.PubMedGoogle Scholar
  39. 39.
    Vander Borght T, Minoshima S, Giordani B, Foster NL, Frey KA, Berent S, et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med 1997;38:797–802.PubMedGoogle Scholar
  40. 40.
    Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbé C, Cunningham VJ, et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain 2000;123:340–52.PubMedGoogle Scholar
  41. 41.
    Liepelt I, Reimold M, Maetzler W, Godau J, Reischl G, Gaenslen A, et al. Cortical hypometabolism assessed by a metabolic ratio in Parkinson’s disease primarily reflects cognitive deterioration—[18F]FDG-PET. Mov Disord 2009;24:1504–11.PubMedGoogle Scholar
  42. 42.
    Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60:1745–8.PubMedGoogle Scholar
  43. 43.
    Dubois B, Pilon B, Lhermitte F, Agid Y. Cholinergic deficiency and frontal dysfunction in Parkinson’s disease. Ann Neurol 1990;28:117–21.PubMedGoogle Scholar
  44. 44.
    Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 2006;253:242–7.PubMedGoogle Scholar
  45. 45.
    Eckert T, Van Laere K, Tang C, Lewis DE, Edwards C, Santens P, et al. Quantification of Parkinson’s disease-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging 2007;34:496–501.PubMedGoogle Scholar
  46. 46.
    Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006;129:2667–78.PubMedGoogle Scholar
  47. 47.
    Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. NeuroRx 2005;2:361–71.PubMedGoogle Scholar
  48. 48.
    Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol 2007;6:926–32.PubMedGoogle Scholar
  49. 49.
    Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 2010;20:1175–86.PubMedGoogle Scholar
  50. 50.
    Braskie MN, Landau SM, Wilcox CE, Taylor SD, O’Neil JP, Baker SL, et al. Correlations of striatal dopamine synthesis with default network deactivations during working memory in younger adults. Hum Brain Mapp 2011;32:947–61.PubMedGoogle Scholar
  51. 51.
    Tang CC, Poston KL, Dhawan V, Eidelberg D. Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J Neurosci 2010;30:1049–56.PubMedGoogle Scholar
  52. 52.
    Lee SJ, Kim JS, Yoo JY, Song IU, Kim BS, Jung SL, et al. Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord 2010;24:227–33.PubMedGoogle Scholar
  53. 53.
    Beyer MK, Aarsland D, Greve OJ, Larsen JP. Visual rating of white matter hyperintensities in Parkinson’s disease. Mov Disord 2006;21:223–9.PubMedGoogle Scholar
  54. 54.
    Dalaker TO, Larsen JP, Bergsland N, Beyer MK, Alves G, Dwyer MG, et al. Brain atrophy and white matter hyperintensities in early Parkinson’s disease. Mov Disord 2009;24:2233–41.PubMedGoogle Scholar
  55. 55.
    Dalaker TO, Larsen JP, Dwyer MG, Aarsland D, Beyer MK, Alves G, et al. White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson’s disease. Neuroimage 2009;47:2083–9.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Flavio Nobili
    • 1
  • Dario Arnaldi
    • 1
  • Claudio Campus
    • 1
  • Michela Ferrara
    • 1
  • Fabrizio De Carli
    • 2
  • Andrea Brugnolo
    • 1
  • Barbara Dessi
    • 1
  • Nicola Girtler
    • 1
  • Silvia Morbelli
    • 3
  • Giovanni Abruzzese
    • 4
  • Gianmario Sambuceti
    • 3
  • Guido Rodriguez
    • 1
  1. 1.Clinical Neurophysiology, Department of Neurosciences, Ophthalmology and GeneticsUniversity of GenoaGenoaItaly
  2. 2.Institute of Molecular Bioimaging and PhysiologyNational Research CouncilGenoaItaly
  3. 3.Nuclear Medicine, Department of Internal MedicineUniversity of GenoaGenoaItaly
  4. 4.Clinical Neurology, Department of Neurosciences, Ophthalmology and GeneticsUniversity Hospital San. MartinoGenoaItaly

Personalised recommendations