Skip to main content
Log in

Guidelines for standard and diuretic renogram in children

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Special consideration needs to be given to children who undergo dynamic renography. The Paediatric Committee of the European Association of Nuclear Medicine has updated the previous guidelines. Details are provided on how to manage the child, the equipment, and the acquisition and processing protocols. The pitfalls, difficulties and controversies that are encountered are also discussed, as well as the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the Radionuclides in Nephrourology Committee on renal clearance. J Nucl Med 1996;37:1883–90.

    PubMed  CAS  Google Scholar 

  2. O’Reilly P, Aurell M, Britton K, Kletter K, Rosenthal L, Testa T. Consensus on diuresis renography for investigating the dilated upper urinary tract. Radionuclides in Nephrourology Group. Consensus Committee on Diuresis Renography. J Nucl Med 1996;37:1872–6.

    PubMed  Google Scholar 

  3. Taylor Jr A, Nally J, Aurell M, Blaufox D, Dondi M, Dubovsky E, et al. Consensus report on ACE inhibitor renography for detecting renovascular hypertension. Radionuclides in Nephrourology Group. Consensus Group on ACEI Renography. J Nucl Med 1996;37:1876–82.

    PubMed  CAS  Google Scholar 

  4. Prigent A, Cosgriff P, Gates GF, Granderus G, Fine EJ, Itoh K, et al. Consensus report on quality control of quantitative measurements of renal function obtained from renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 1999;29:146–59.

    Article  PubMed  CAS  Google Scholar 

  5. Rutland MD. A comprehensive analysis of renal DTPA studies. I. Theory and normal values. Nucl Med Commun 1985;6:11–20.

    Article  PubMed  CAS  Google Scholar 

  6. Durand E, Blaufox MD, Britton KE, Carlsen O, Cosgriff P, Fine E, et al. International Scientific Committee of Radionuclides in Nephrourology (ISCORN) consensus on renal transit time measurements. Semin Nucl Med 2008;38:82–102.

    Article  PubMed  Google Scholar 

  7. Piepsz A, Arnello F, Tondeur M, Ham HR. Diuretic renography in children. J Nucl Med 1998;39:2015–6.

    PubMed  CAS  Google Scholar 

  8. Upsdell SM, Leeson SM, Brooman PJ, O’Reilly PH. Diuretic-induced urinary flow rates at varying clearances and their relevance to the performance and interpretation of diuresis renography. Br J Urol 1988;61:14–8.

    Article  PubMed  CAS  Google Scholar 

  9. Conway JJ. “Well-tempered” diuresis renography: its historical development, physiological and technical pitfalls, and standardized technique protocol. Review. Semin Nucl Med 1992;22:74–84. Also published as The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. A report from combined meetings of The Society for Fetal Urology and members of The Pediatric Nuclear Medicine Council—The Society of Nuclear Medicine. J Nucl Med 1992;33:2047–51.

    Article  PubMed  CAS  Google Scholar 

  10. Dubovsky EV, Russell CD, Bischof-Delaloye A, Bubeck B, Chaiwatanarat T, Hilson AJ, et al. Report of the Radionuclides in Nephrourology Committee for evaluation of transplanted kidney (review of techniques). Semin Nucl Med 1999;29:175–88.

    Article  PubMed  CAS  Google Scholar 

  11. Pintelon H, Jonckheer MH, Piepsz A. Paediatric nuclear medicine procedures: routine sedation or management of anxiety? Nucl Med Commun 1994;15:664–6.

    PubMed  CAS  Google Scholar 

  12. Mandell GA, Cooper JA, Majd M, Shalaby-Rana EI, Gordon I. Procedure guideline for pediatric sedation in nuclear medicine. Society of Nuclear Medicine. J Nucl Med 1997;38:1640–3.

    PubMed  CAS  Google Scholar 

  13. Gordon I. Issues surrounding preparation, information and handling the child and parent in nuclear medicine. J Nucl Med 1998;39:490–4.

    PubMed  CAS  Google Scholar 

  14. Gilday D. Paediatric issues. In: Maisey MN, Britton KE, Collier BD, editors. Clinical nuclear medicine. London: Chapman and Hall; 1998. p. 85–112.

    Google Scholar 

  15. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2009;36(3):540–1.

    Article  Google Scholar 

  16. Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 1998;42:93–112.

    PubMed  CAS  Google Scholar 

  17. Smith T, Gordon I. An update of radiopharmaceutical schedules in children. Nucl Med Commun 1998;19:1023–36.

    Article  PubMed  CAS  Google Scholar 

  18. Pena H, Ham HR, Piepsz A. Effect of the length of the frame time on the 99mTc-MAG 3 gamma-camera clearance (abstract). Eur J Nucl Med 1998;25:1105.

    Google Scholar 

  19. Lythgoe MF, Gordon I, Khader Z, Smith T, Anderson PJ. Assessment of various parameters in the estimation of differential renal function using technetium-99m mercaptoacetyltriglycine. Eur J Nucl Med 1999;26:155–62.

    Article  PubMed  CAS  Google Scholar 

  20. Piepsz A, Tondeur M, Ham H. Relative 99mTc-MAG3 renal uptake: reproducibility and accuracy. J Nucl Med 1999;40:972–6.

    PubMed  CAS  Google Scholar 

  21. Halkar RK, Chrem Y, Galt BC, et al. Interobserver variability in quantitating the MAG3 renal uptake based on semiautomated and manual regions of interest (abstract). J Nucl Med 1996;37:293P.

    Google Scholar 

  22. Tomaru Y, Inoue T, Oriuchi N, Takahashi K, Endo K. Semi-automated renal region of interest selection method using the double-threshold technique: inter-operator variability in quantitating 99mTc-MAG3 renal uptake. Eur J Nucl Med 1998;25:55–9.

    Article  PubMed  CAS  Google Scholar 

  23. Inoue Y, Machida K, Honda N, Takahashi T, Mamiya T. Background correction in estimating initial renal uptake. Comparison between Tc-99m MAG3 and Tc-99m DTPA. Clin Nucl Med 1994;19:1049–54.

    Article  PubMed  CAS  Google Scholar 

  24. Peters AM, Gordon I, Evans K, Todd-Pokropek A. Background in the 99mTc-DTPA renogram: analysis of intravascular and extravascular components. Am J Physiol Imaging 1987;2:67–71.

    PubMed  CAS  Google Scholar 

  25. Decostre PL, Salmon Y. Temporal behavior of peripheral organ distribution volume in mammillary systems. II. Application to background correction in separate glomerular filtration rate estimation in man. J Nucl Med 1990;31:1710–6.

    PubMed  CAS  Google Scholar 

  26. Moonen M, Granerus G. Subtraction of extra-renal background in 99mTc-DTPA renography: comparison of various regions of interest. Clin Physiol 1992;12:453–61.

    Article  PubMed  CAS  Google Scholar 

  27. Middleton GW, Thomson WH, Davies IH, Morgan A. A multiple regression analysis for accurate background subtraction in 99Tcm-DTPA renography. Nucl Med Commun 1989;10:315–24.

    Article  PubMed  CAS  Google Scholar 

  28. Piepsz A, Dobbeleir A, Ham HR. Effect of background correction on separate technetium-99m-DTPA renal clearance. J Nucl Med 1990;31:430–5.

    PubMed  CAS  Google Scholar 

  29. Granerus G, Moonen M. Effects of extra-renal background subtraction and kidney depth correction in the measurement of GFR by gamma camera renography. Nucl Med Commun 1991;12:519–27.

    Article  PubMed  CAS  Google Scholar 

  30. Martel AL, Tindale WB. Background subtraction in 99Tcm-DTPA renography using multiple background regions: a comparison of methods. Nucl Med Commun 1994;15:636–42.

    PubMed  CAS  Google Scholar 

  31. Peters AM, George P, Ballardie F, Gordon I, Todd-Pokropek A. Appropriate selection of background for 99Tcm-DTPA renography. Nucl Med Commun 1988;9:973–85.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor Jr A, Thakore K, Folks R, Halkar R, Manatunga A. Background subtraction in technetium-99m-MAG3 renography. J Nucl Med 1997;38:74–9.

    PubMed  Google Scholar 

  33. Facey PE, Middleton GW, Rees JIS, et al. Relative renal function in 99Tcm-MAG3 renography is affected by selection of background region (abstract). Nucl Med Commun 1994;15:199.

    Article  Google Scholar 

  34. Ladrón de Guevara Hernández D, Ham H, Franken P, Piepsz A, Lobo Sotomayor G. Aspetos metodologicos relacionados con la determinacion de la funcion renal relative usando 99m Tc MAG3. Rev Esp Med Nucl 2002;21:338–42.

    PubMed  Google Scholar 

  35. Gordon I, Anderson PJ, Lythgoe MF, Orton M. Can technetium-99m-mercaptoacetyltriglycine replace technetium-99m-dimercaptosuccinic acid in the exclusion of a focal renal defect? J Nucl Med 1992;33:2090–3.

    PubMed  CAS  Google Scholar 

  36. Lythgoe MF, Gradwell MJ, Evans K, Gordon I. Estimation and relevance of depth correction in paediatric renal studies. Eur J Nucl Med 1998;25:115–9.

    Article  PubMed  CAS  Google Scholar 

  37. Gruenewald SM, Collins LT, Fawdry RM. Kidney depth measurement and its influence on quantitation of function from gamma camera renography. Clin Nucl Med 1985;10:398–401.

    Article  PubMed  CAS  Google Scholar 

  38. Ostrowski ST, Tothill P. Kidney depth measurements using a double isotope technique. Br J Radiol 1975;48:291–4.

    Article  PubMed  CAS  Google Scholar 

  39. Nimmon BJ, Merrick MV, Allan PL. Measurement of relative renal function. A comparison of methods and assessment of reproducibility. Br J Radiol 1987;60:861–4.

    Article  Google Scholar 

  40. Moonen M, Jacobsson L, Granerus G, Friberg P, Volkmann R. Determination of split renal function from gamma camera renography: a study of three methods. Nucl Med Commun 1994;15:704–71.

    Article  PubMed  CAS  Google Scholar 

  41. Piepsz A, Kinthaert J, Tondeur M, Ham HR. The robustness of the Patlak-Rutland slope for the determination of split renal function. Nucl Med Commun 1996;17:817–82.

    Article  PubMed  CAS  Google Scholar 

  42. Groothedde RT. The individual kidney function. A comparison between frame summation and deconvolution. Nucl Med Commun 1985;6:513–8.

    Article  PubMed  CAS  Google Scholar 

  43. Sennewald K, Taylor Jr A. A pitfall in calculating differential renal function in patients with renal failure. Clin Nucl Med 1993;18:377–81.

    Article  PubMed  CAS  Google Scholar 

  44. Sámal M, Nimmon CC, Britton KE, Bergmann H. Relative renal uptake and transit time measurements using functional factor images and fuzzy regions of interest. Eur J Nucl Med 1998;25:48–54.

    PubMed  Google Scholar 

  45. O’Reilly PH, Testa HJ, Lawson RS, Farrar DJ, Edwards EC. Diuresis renography in equivocal urinary tract obstruction. Br J Urol 1978;50:76–80.

    Article  PubMed  Google Scholar 

  46. Gordon I, Mialdea-Fernandez RM, Peters AM. Pelviuretic junction obstruction. The value of post-micturition view in 99mTc DTPA diuretic renography. Br J Urol 1988;61:409–12.

    Article  PubMed  CAS  Google Scholar 

  47. Rossleigh M, Leighton DM, Farnsworth RH. Diuresis renography. The need for an additional view after gravity-assisted drainage. Clin Nucl Med 1993;18:210–3.

    Article  PubMed  CAS  Google Scholar 

  48. Chaiwatanarat T, Padhy AK, Bomanji JB, Nimmon CC, Sonmezoglu K, Britton KE. Validation of renal output efficiency as an objective quantitative parameter in the evaluation of upper urinary tract obstruction. J Nucl Med 1993;34:845–8.

    PubMed  CAS  Google Scholar 

  49. Anderson PJ, Rangarajan V, Gordon I. Assessment of drainage in PUJ dilatation: pelvic excretion efficiency as an index of renal function. Nucl Med Commun 1997;18:823–6.

    Article  PubMed  CAS  Google Scholar 

  50. Piepsz A, Tondeur M, Ham H. NORA: a simple and reliable parameter for estimating renal output with or without furosemide challenge. Nucl Med Commun 2000;21:317–23.

    Article  PubMed  CAS  Google Scholar 

  51. Nimmon CC, Sámal M, Britton KE. Elimination of the influence of total renal function on renal output efficiency and normalized residual activity. J Nucl Med 2004;45:587–93.

    PubMed  Google Scholar 

  52. Cosgriff PS, Lawson RS, Nimmon CC. Towards standardization in gamma camera renography. Nucl Med Commun 1992;13:580–5.

    PubMed  CAS  Google Scholar 

  53. Tondeur M, De Palma D, Roca I, Piepsz A, Ham H. Inter-observer reproducibility in reporting on renal drainage in children with hydronephrosis: a large collaborative study. Eur J Nucl Med Mol Imaging 2008;35:644–54.

    Article  PubMed  Google Scholar 

  54. Piepsz A, Kuyvenhoven JD, Tondeur M, Ham H. Normalized residual activity: usual values and robustness of the method. J Nucl Med 2002;43:33–8.

    PubMed  Google Scholar 

  55. Eskild-Jensen A, Gordon I, Piepsz A, Frøkiaer J. Interpretation of the renogram: problems and pitfalls in hydronephrosis in children. BJU Int 2004;94(6):887–92.

    Article  PubMed  Google Scholar 

  56. Gordon I. Diuretic renography in infants with prenatal unilateral hydronephrosis: an explanation for the controversy about poor drainage. BJU Int 2001;87:551–5.

    Article  PubMed  CAS  Google Scholar 

  57. Amarante J, Anderson PJ, Gordon I. Impaired drainage on diuretic renography using half-time or pelvic excretion efficiency is not a sign of obstruction in children with a prenatal diagnosis of unilateral renal pelvic dilatation. J Urol 2003;169:1828–31.

    Article  PubMed  CAS  Google Scholar 

  58. De Agostini A, Moretti R, Belletti S, Maira G, Magri GC, Bestagno M. A motion correction algorithm for an image realignment programme useful for sequential radionuclide renography. Eur J Nucl Med 1992;19:476–83.

    Article  PubMed  Google Scholar 

  59. Lee KJ, Barber DC. Automatic motion correction in dynamic renography using image registration. Nucl Med Commun 1998;19:1159–67.

    Article  PubMed  CAS  Google Scholar 

  60. Zaknun JJ, Rajabi H, Piepsz A, Roca I, Dondi M. The International Atomic Energy Agency software package for the analysis of scintigraphic renal dynamic studies: a tool for the clinician, teacher, and researcher. Semin Nucl Med 2011;41(1):73–80.

    Article  PubMed  Google Scholar 

  61. Gordon I. Assessment of pediatric hydronephrosis using output efficiency. J Nucl Med 1997;38:1487–9.

    PubMed  CAS  Google Scholar 

  62. Schlotmann A, Clorius JH, Clorius SN. Diuretic renography in hydronephrosis: renal tissue tracer transit predicts functional course and thereby need for surgery. Eur J Nucl Med Mol Imaging 2009;36:1665–73.

    Article  PubMed  Google Scholar 

  63. Nogarède C, Tondeur M, Piepsz A. Normalized residual activity and output efficiency in case of early furosemide injection in children. Nucl Med Commun 2010;31:355–8.

    PubMed  Google Scholar 

  64. Ransley PG, Dhillon HK, Gordon I, Duffy PG, Dillon MJ, Barratt TM. The postnatal management of hydronephrosis diagnosed by prenatal ultrasound. J Urol 1990;144:584–7.

    PubMed  CAS  Google Scholar 

  65. Koff SA, Campbell KD. The nonoperative management of unilateral neonatal hydronephrosis: natural history of poorly functioning kidneys. J Urol 1994;152:593–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isky Gordon.

Additional information

Under the Auspices of the Paediatric Committee of the European Association of Nuclear Medicine (chair: D. De Palma, Varese, Italy)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, I., Piepsz, A. & Sixt, R. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging 38, 1175–1188 (2011). https://doi.org/10.1007/s00259-011-1811-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1811-3

Keywords

Navigation