Skip to main content

Advertisement

Log in

Molecular imaging of microRNAs

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a novel class of small noncoding RNAs that regulate gene expression by targeting mRNAs for either cleavage or translational repression. They have been shown to play important roles in a broad range of biological processes including development, cellular differentiation, proliferation and apoptosis. Conventional detection methods, such as northern blot, real-time PCR or microarray, have been used to assess miRNA expression. However, these techniques require the fixation or lysis of cells, and thus cannot be used to study the dynamic function of miRNAs in living cells. Recent remarkable advances in molecular imaging techniques have provided the capability of noninvasive repeated quantitative imaging of tumour or stem cells in living animals. The current brief discussion focuses on the reporter and fluorescent beacon imaging approaches to visualize miRNA expression in living subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–60.

    Article  PubMed  CAS  Google Scholar 

  2. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9.

    Article  PubMed  CAS  Google Scholar 

  3. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–6.

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed  CAS  Google Scholar 

  5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.

    Article  PubMed  CAS  Google Scholar 

  7. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  PubMed  CAS  Google Scholar 

  8. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

    Article  PubMed  Google Scholar 

  9. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    Article  PubMed  CAS  Google Scholar 

  10. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003;9:180–6.

    Article  PubMed  CAS  Google Scholar 

  11. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  PubMed  CAS  Google Scholar 

  12. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13:790–5.

    Article  PubMed  CAS  Google Scholar 

  13. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60.

    Article  PubMed  Google Scholar 

  14. Winter J, Diederichs S. MicroRNA biogenesis and cancer. Methods Mol Biol. 2011;676:3–22.

    Article  PubMed  CAS  Google Scholar 

  15. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9:775–89.

    Article  PubMed  CAS  Google Scholar 

  16. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  PubMed  CAS  Google Scholar 

  17. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8.

    Article  PubMed  CAS  Google Scholar 

  18. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  PubMed  CAS  Google Scholar 

  19. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  PubMed  CAS  Google Scholar 

  20. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  PubMed  CAS  Google Scholar 

  21. Allawi HT, Dahlberg JE, Olson S, Lund E, Olson M, Ma WP, et al. Quantitation of microRNAs using a modified Invader assay. RNA. 2004;10:1153–61.

    Article  PubMed  CAS  Google Scholar 

  22. Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 2004;32:e43.

    Article  PubMed  Google Scholar 

  23. Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 2005;11:1737–44.

    Article  PubMed  CAS  Google Scholar 

  24. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004;1:47–53.

    Article  PubMed  CAS  Google Scholar 

  25. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 2004;1:155–61.

    Article  PubMed  CAS  Google Scholar 

  26. Rosero S, Bravo-Egana V, Jiang Z, Khuri S, Tsinoremas N, Klein D, et al. MicroRNA signature of the human developing pancreas. BMC Genomics. 2010;11:509.

    Article  PubMed  Google Scholar 

  27. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009;18:4818–29.

    Article  PubMed  CAS  Google Scholar 

  28. Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, ’t Hoen PA. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics. 2010;11:716.

    Article  PubMed  CAS  Google Scholar 

  29. Fehniger TA, Wylie T, Germino E, Leong JW, Magrini VJ, Koul S, et al. Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 2010;20:1590–604.

    Article  PubMed  CAS  Google Scholar 

  30. Wessels JT, Yamauchi K, Hoffman RM, Wouters FS. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Cytometry A. 2010;77:667–76.

    PubMed  Google Scholar 

  31. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.

    Article  PubMed  CAS  Google Scholar 

  32. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5:396–400.

    Article  PubMed  CAS  Google Scholar 

  33. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol. 2007;25:1457–67.

    Article  PubMed  CAS  Google Scholar 

  34. Brown BD, Venneri MA, Zingale A, Sergi L, Naldini L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med. 2006;12:585–91.

    Article  PubMed  CAS  Google Scholar 

  35. Kato Y, Miyaki S, Yokoyama S, Omori S, Inoue A, Horiuchi M, et al. Real-time functional imaging for monitoring miR-133 during myogenic differentiation. Int J Biochem Cell Biol. 2009;41:2225–31.

    Article  PubMed  CAS  Google Scholar 

  36. Kato Y, Sawata SY, Inoue A. A lentiviral vector encoding two fluorescent proteins enables imaging of adenoviral infection via adenovirus-encoded miRNAs in single living cells. J Biochem. 2010;147:63–71.

    Article  PubMed  CAS  Google Scholar 

  37. Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging. 2004;3:9–23.

    Article  PubMed  CAS  Google Scholar 

  38. Gould SJ, Subramani S. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem. 1988;175:5–13.

    Article  PubMed  CAS  Google Scholar 

  39. Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther. 2005;11:435–43.

    Article  PubMed  CAS  Google Scholar 

  40. Negrin RS, Contag CH. In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol. 2006;6:484–90.

    Article  PubMed  CAS  Google Scholar 

  41. Lee JY, Kim S, Hwang do W, Jeong JM, Chung JK, Lee MC, et al. Development of a dual-luciferase reporter system for in vivo visualization of microRNA biogenesis and posttranscriptional regulation. J Nucl Med. 2008;49:285–94.

    Article  PubMed  CAS  Google Scholar 

  42. Ko MH, Kim S, Hwang do W, Ko HY, Kim YH, Lee DS. Bioimaging of the unbalanced expression of microRNA9 and microRNA9* during the neuronal differentiation of P19 cells. FEBS J. 2008;275:2605–16.

    Article  PubMed  CAS  Google Scholar 

  43. Kim HJ, Chung JK, Hwang do W, Lee DS, Kim S. In vivo imaging of miR-221 biogenesis in papillary thyroid carcinoma. Mol Imaging Biol. 2009;11:71–8.

    Article  PubMed  Google Scholar 

  44. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20:2202–7.

    Article  PubMed  CAS  Google Scholar 

  45. Kim HJ, Kim YH, Lee DS, Chung JK, Kim S. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. J Nucl Med. 2008;49:1686–93.

    Article  PubMed  CAS  Google Scholar 

  46. Ko HY, Lee DS, Kim S. Noninvasive imaging of microRNA124a-mediated repression of the chromosome 14 ORF 24 gene during neurogenesis. FEBS J. 2009;276:4854–65.

    Article  PubMed  CAS  Google Scholar 

  47. Nitin N, Santangelo PJ, Kim G, Nie S, Bao G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res. 2004;32:e58.

    Article  PubMed  Google Scholar 

  48. Santangelo P, Nitin N, Bao G. Nanostructured probes for RNA detection in living cells. Ann Biomed Eng. 2006;34:39–50.

    Article  PubMed  Google Scholar 

  49. Kang WJ, Cho YL, Chae JR, Lee JD, Choi KJ, Kim S. Molecular beacon-based bioimaging of multiple microRNAs during myogenesis. Biomaterials. 2011;32:1915–22.

    Article  PubMed  CAS  Google Scholar 

  50. Hwang do W, Song IC, Lee DS, Kim S. Smart magnetic fluorescent nanoparticle imaging probes to monitor microRNAs. Small. 2010;6:81–8.

    Article  PubMed  Google Scholar 

  51. Niu G, Chen X. Noninvasive visualization of microRNA by bioluminescence imaging. Mol Imaging Biol. 2009;11:61–3.

    Article  PubMed  Google Scholar 

  52. Niu G, Gaut AW, Ponto LL, Hichwa RD, Madsen MT, Graham MM, et al. Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med. 2004;45:445–9.

    PubMed  CAS  Google Scholar 

  53. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. In: Semmler W, Schwaiger M, editors. Handbook of experimental pharmacology. Vol 185/1. Molecular Imaging I. Berlin: Springer; 2008. p. 109–132.

  54. Iagaru A, Mittra E, Yaghoubi SS, Dick DW, Quon A, Goris ML, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50:501–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, the National Basic Research and Development Program of China (973) under grant nos. 2006CB705700 and 2011CB707702, the National Natural Science Foundation of China under grant nos. 81090272, 81090274, 81000632, 30900334 and 30970845, and the Fundamental Research Funds for the Central Universities under grant no. JY10000910002.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Chen or Feng Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Niu, G., Chen, X. et al. Molecular imaging of microRNAs. Eur J Nucl Med Mol Imaging 38, 1572–1579 (2011). https://doi.org/10.1007/s00259-011-1786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1786-0

Keywords

Navigation