Skip to main content

Advertisement

Log in

Therapy of thyroid carcinoma with the histone deacetylase inhibitor MS-275

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Dysregulation of histone acetylation associated with an up-regulation of histone deacetylase (HDAC) activity is common in malignant tumours. Therefore, HDAC inhibitors were developed whose effects on proliferation and apoptosis have been shown in different tumour entities. Since non-iodide-concentrating thyroid carcinomas represent a therapeutic problem, this study addressed the effects of the HDAC inhibitor MS-275 on thyroid carcinoma cells.

Methods

After the antiproliferative effect of MS-275 had been proven in different human and rat thyroid carcinoma cell lines, FRO82-2, SW1736 and FTC133 cells were further investigated with respect to changes in apoptosis, cell cycle and metabolism by the annexin V/propidium iodide assay, FACS analysis and uptake experiments employing 3-O-methyl-D-(3H)glucose, fluoro-2-deoxy-D-glucose2 [5,6-3H] and 14C-aminoisobutyric acid (AIB). The induction of iodide transport and gene expression were investigated in 125iodide uptake experiments and real-time polymerase chain reaction (PCR).

Results

MS-275 induced a concentration- and time-dependent inhibition of proliferation in the thyroid carcinoma cell lines with varying IC50 values. In FRO82-2, SW1736 and FTC133 cells characterized by low, moderate and high sensitivity an up-regulation of p21CIP/WAF1 expression and G1 and/or G2 phase arrest were observed upon MS-275 exposure corresponding to the sensitivity of individual cell lines. In addition, high MS-275 concentrations increased the apoptotic cell fraction of FTC133 and SW1736 cells, whereas resistance to apoptosis and simultaneous up-regulation of Bcl-2 gene expression were observed in FRO82-2 cells. MS-275 treatment also mediated a concentration-dependent decrease of 3H-FDG uptake and an increased 3-O-methyl-D-(3H)glucose uptake in all thyroid carcinoma cell lines after 24 h, an increased uptake of both tracers in FTC133 cells after 48 h, and restored the functional activity of the sodium-iodide symporter in SW1736 and FTC133 cells up to 20- and 45-fold.

Conclusion

MS-275 exerts dose-dependent antiproliferative effects including growth arrest, differentiation and apoptosis in some thyroid carcinoma cell lines and might, therefore, be considered for the treatment of anaplastic and non-iodide-concentrating thyroid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–4.

    Article  CAS  PubMed  Google Scholar 

  2. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002;1:287–99.

    Article  CAS  PubMed  Google Scholar 

  3. Vigushin DM, Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 2002;13:1–13.

    Article  CAS  PubMed  Google Scholar 

  4. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–83.

    Article  CAS  PubMed  Google Scholar 

  5. Rosato RR, Grant S. Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2003;2:30–7.

    PubMed  Google Scholar 

  6. Han JW, Ahn SH, Park SH, Wang SH, Bae G-U, Seo D-W, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF/Cip1 and gelsolin. Cancer Res 2000;60:6068–74.

    CAS  PubMed  Google Scholar 

  7. Herold C, Ganslmayer M, Ocker M, Hermann M, Geerts A, Hahn EG, et al. The histone-deacetylase inhibitor trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 2002;36:233–40.

    Article  CAS  PubMed  Google Scholar 

  8. Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N, et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999;274:34940–7.

    Article  CAS  PubMed  Google Scholar 

  9. Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci USA 1998;95:6791–6.

    Article  CAS  PubMed  Google Scholar 

  10. Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000;97:10014–9.

    Article  CAS  PubMed  Google Scholar 

  11. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sherman SI. Thyroid carcinoma. Lancet 2003;361:501–11.

    Article  PubMed  Google Scholar 

  13. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999;96:4592–7.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999;42:3001–3.

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  16. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001;42:317–25.

    CAS  PubMed  Google Scholar 

  17. Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000;11:2069–83.

    CAS  PubMed  Google Scholar 

  18. Burgess AJ, Pavey S, Warrener R, Hunter L-JK, Piva TJ, Musgrove EA, et al. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol 2001;60:828–37.

    CAS  PubMed  Google Scholar 

  19. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1. Cancer Res 2003;63:3637–45.

    CAS  PubMed  Google Scholar 

  20. Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 2005;25:1608–19.

    Article  CAS  PubMed  Google Scholar 

  21. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 2002;62:6108–15.

    CAS  PubMed  Google Scholar 

  22. Lindemann RK, Johnstone RW. Histone deacetylase inhibitors: promising candidates for chemotherapeutic drugs. Gene Ther Mol Biol 2004;8:61–74.

    Google Scholar 

  23. Liu S, Bishop WR, Liu M. Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat 2003;6:183–95.

    Article  CAS  PubMed  Google Scholar 

  24. Vidal A, Koff A. Cell-cycle inhibitors: three families united by a common cause. Gene 2000;247:1–15.

    Article  CAS  PubMed  Google Scholar 

  25. Xiao X, Ning L, Chen H. Notch1 mediates growth suppression of papillary and follicular thyroid cancer cells by histone deacetylase inhibitors. Mol Cancer Ther 2009;8:350–6.

    Article  CAS  PubMed  Google Scholar 

  26. Marks PA, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 2009;107:600–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bissonette N, Hunting DJ. p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene 1998;16:3461–9.

    Article  Google Scholar 

  28. Kim DK, Cho ES, Lee SJ, Um HD. Constitutive hyperexpression of p21(WAF1) in human U266 myeloma cells blocks the lethal signaling induced by oxidative stress but not by Fas. Biochem Biophys Res Commun 2001;289:34–8.

    Article  CAS  PubMed  Google Scholar 

  29. Chai F, Evdokiou A, Young GP, Zalewski PD. Involvement of p21(Waf1/Cip1) and its cleavage by DEVD-caspase during apoptosis of colorectal cancer cells induced by butyrate. Carcinogenesis 2000;21:7–14.

    Article  CAS  PubMed  Google Scholar 

  30. Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, et al. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad. Brain Tumor Pathol 2001;18:109–14.

    Article  CAS  PubMed  Google Scholar 

  31. Haberkorn U, Altmann A, Kamencic H, Morr I, Traut U, Henze M, et al. Glucose transport and apoptosis after gene therapy with HSV thymidine kinase. Eur J Nucl Med 2001;28:1690–6.

    Article  CAS  PubMed  Google Scholar 

  32. Haberkorn U, Bellemann ME, Brix G, Kamencic H, Morr I, Traut U, et al. Apoptosis and changes in glucose transport after treatment of Morris hepatoma with gemcitabine. Eur J Nucl Med 2001;28:418–25.

    Article  CAS  PubMed  Google Scholar 

  33. Kitazono M, Robey R, Zhan Z, Sarlis NJ, Skarulis MC, Aikou T, et al. Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 2001;86:3430–5.

    Article  CAS  PubMed  Google Scholar 

  34. Zarnegar R, Brunaud L, Kanauchi H, Wong M, Fung M, Ginzinger D, et al. Increasing the effectiveness of radioactive iodine therapy in the treatment of thyroid cancer using trichostatin A, a histone deacetylase inhibitor. Surgery 2002;132:984–90.

    Article  PubMed  Google Scholar 

  35. Furuya F, Shimura H, Suzuki H, Taki K, Ohta K, Haraguchi K, et al. Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology 2004;145:2865–75.

    Article  CAS  PubMed  Google Scholar 

  36. Fortunati N, Catalano MG, Arena K, Brignardello E, Piovesan A, Boccuzzi G. Valproic acid induces the expression of the Na+/I- symporter and iodine uptake in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 2004;89:1006–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tan J, Cang S, Ma Y, Petrillo RL, Lui D. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010;3:5.

    Article  PubMed  Google Scholar 

  38. Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodide uptake in thyroid cancer cells by targeting major signaling pathways. J Clin Endocrinol Metab 2010;95:820–8.

    Article  CAS  PubMed  Google Scholar 

  39. Jüttermann R, Li E, Jaenisch R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 1994;91:11797–801.

    Article  PubMed  Google Scholar 

  40. Borbone E, Berlingieri MT, De Bellis F, Nebbioso A, Chiappetta G, Mai A, et al. Histone deacetylase inhibitors induce thyroid cancer-specific apoptosis through proteasome-dependent inhibition of TRAIL degradation. Oncogene 2010;29:105–16.

    Article  CAS  PubMed  Google Scholar 

  41. Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004;64:316–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gabriela Glensch, Iris Wolf and Mechthild Samer for their contribution to the cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Altmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmann, A., Eisenhut, M., Bauder-Wüst, U. et al. Therapy of thyroid carcinoma with the histone deacetylase inhibitor MS-275. Eur J Nucl Med Mol Imaging 37, 2286–2297 (2010). https://doi.org/10.1007/s00259-010-1573-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1573-3

Keywords

Navigation