Advertisement

EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting

  • M. LassmannEmail author
  • C. Chiesa
  • G. Flux
  • M. Bardiès
Guidelines

Abstract

Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.

Keywords

Dosimetry Targeted radiotherapy Reporting 

Notes

Acknowledgment

This work was developed under the close supervision of the Dosimetry Committee of the EANM (K. Bacher, M. Bardiès, C. Chiesa, G. Flux, M. Konijnenberg, M. Lassmann, S. Palm [observer from the IAEA], S.-E. Strand, and L. Strigari).

We would like to thank S. Baechler, A. Chiti, M. Guy, C. Greaves, and the national societies of nuclear medicine for their helpful comments and suggestions.

Supplementary material

259_2010_1549_MOESM1_ESM.pdf (17 kb)
ESM (PDF 16.7 KB)

References

  1. 1.
    Wahl RL. Tositumomab and 131I therapy in non-Hodgkin's lymphoma. J Nucl Med 2005;46 Suppl 1:128S–40S.PubMedGoogle Scholar
  2. 2.
    Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of dosimetry-based high-dose 131I-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm 2005;20:195–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Noseda M, McLean GR. Where did the scientific method go? Nat Biotechnol 2008;26:28–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Busemann Sokole E, Plachcinska A, Britten A, Lyra Georgosopoulou M, Tindale W, Klett R. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010;37:662–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Lassmann M, Luster M, Hanscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004;45:619–25.PubMedGoogle Scholar
  6. 6.
    Jonsson L, Ljungberg M, Strand SE. Evaluation of accuracy in activity calculations for the conjugate view method from Monte Carlo simulated scintillation camera images using experimental data in an anthropomorphic phantom. J Nucl Med 2005;46:1679–86.PubMedGoogle Scholar
  7. 7.
    He B, Du Y, Segars WP, Wahl RL, Sgouros G, Jacene H, et al. Evaluation of quantitative imaging methods for organ activity and residence time estimation using a population of phantoms having realistic variations in anatomy and uptake. Med Phys 2009;36:612–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Assié K, Dieudonne A, Gardin I, Buvat I, Tilly H, Vera P. Comparison between 2D and 3D dosimetry protocols in 90Y-ibritumomab tiuxetan radioimmunotherapy of patients with non-Hodgkin's lymphoma. Cancer Biother Radiopharm 2008;23:53–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Vriens D, Visser EP, de Geus-Oei LF, Oyen WJ. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging 2010;37:1408–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Jaszczak RJ, Floyd CE, Coleman RE. Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci 1985;32:786–93.CrossRefGoogle Scholar
  11. 11.
    Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–21.PubMedGoogle Scholar
  12. 12.
    Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol. 2010;55:2365–98.CrossRefPubMedGoogle Scholar
  13. 13.
    Jentzen W, Weise R, Kupferschlager J, Freudenberg L, Brandau W, Bares R, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008;35:611–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Hobbs RF, Baechler S, van Senthamizhchel S, Prideaux AR, Esaias CE, Reinhardt M, et al. A gamma camera count rate saturation correction method for whole-body planar imaging. Phys Med Biol 2010;55:817–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Chiesa C, Negri A, Albertini C, Azzeroni R, Setti E, Mainardi L, et al. (2009) A practical dead time correction method in planar activity quantification for dosimetry during radionuclide therapy. Q J Nucl Med Mol Imaging 2009;53:658–70PubMedGoogle Scholar
  16. 16.
    Gregory RA, Hooker CA, Partridge M, Flux GD. Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system. Eur J Nucl Med Mol Imaging 2009;36:1037–48.CrossRefPubMedGoogle Scholar
  17. 17.
    Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008;35:1405–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol 2002;47:3211–23.CrossRefPubMedGoogle Scholar
  20. 20.
    Divoli A, Spinelli A, Chittenden S, Dearnaley D, Flux G. Whole-body dosimetry for targeted radionuclide therapy using spectral analysis. Cancer Biother Radiopharm 2005;20:66–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test. Med Phys 2007;34:4285–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry – standardization of nomenclature. J Nucl Med 2009;50:477–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Divoli A, Chiavassa S, Ferrer L, Barbet J, Flux GD, Bardies M. Effect of patient morphology on dosimetric calculations for internal irradiation as assessed by comparisons of Monte Carlo versus conventional methodologies. J Nucl Med 2009;50:316–23.CrossRefPubMedGoogle Scholar
  24. 24.
    International Commission on Radiation Units. Absorbed-dose specifications in nuclear medicine. J ICRU. 2002;2:5–110.Google Scholar
  25. 25.
    Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023–7.PubMedGoogle Scholar
  26. 26.
    Grosev D, Loncaric S, Huic D, Dodig D. Geometric models in dosimetry of thyroid remnant mass. Nuklearmedizin 2008;47:120–6.PubMedGoogle Scholar
  27. 27.
    Dale RG. Dose-rate effects in targeted radiotherapy. Phys Med Biol 1996;41:1871–84.CrossRefPubMedGoogle Scholar
  28. 28.
    O'Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 1999;40:1337–41.PubMedGoogle Scholar

Copyright information

© EANM 2010

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity of WürzburgWürzburgGermany
  2. 2.Nuclear Medicine UnitFoundation IRCCS Istituto Nazionale TumoriMilanItaly
  3. 3.Joint Department of PhysicsRoyal Marsden Hospital & Institute of Cancer ResearchLondonUK
  4. 4.INSERM, UMR892 – Centre de Recherche en CancérologieNantesFrance

Personalised recommendations