Advertisement

131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging

  • Emilio Bombardieri
  • Francesco Giammarile
  • Cumali Aktolun
  • Richard P. Baum
  • Angelika Bischof Delaloye
  • Lorenzo Maffioli
  • Roy Moncayo
  • Luc Mortelmans
  • Giovanna Pepe
  • Sven N. Reske
  • Maria R. Castellani
  • Arturo ChitiEmail author
Guidelines

Abstract

The aim of this document is to provide general information about mIBG scintigraphy in cancer patients. The guidelines describe the mIBG scintigraphy protocol currently used in clinical routine, but do not include all existing procedures for neuroendocrine tumours. The guidelines should therefore not be taken as exclusive of other nuclear medicine modalities that can be used to obtain comparable results. It is important to remember that the resources and facilities available for patient care may vary from one country to another and from one medical institution to another. The present guidelines have been prepared for nuclear medicine physicians and intend to offer assistance in optimizing the diagnostic information that can currently be obtained from mIBG scintigraphy. The corresponding guidelines of the Society of Nuclear Medicine (SNM) and the Dosimetry, Therapy and Paediatric Committee of the EANM have been taken into consideration, and partially integrated into this text. The same has been done with the most relevant literature on this topic, and the final result has been discussed within a group of distinguished experts.

Keywords

131I/123I-mIBG scintigraphy Tumour imaging Procedure guidelines Indications 

References

  1. 1.
    Nakajo M, Shapiro B, Copp J, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-I123-iodobenzylguanidine (I-123 MIBG) in man: evaluation by scintigraphy. J Nucl Med 1983;24:672–82.PubMedGoogle Scholar
  2. 2.
    Rubello D, Bui C, Casara D. Functional scintigraphy of the adrenal gland. Eur J Endocrinol 2002;147:13–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Leung A, Shapiro B, Hattner R, et al. The specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 1997;38:1352–7.PubMedGoogle Scholar
  4. 4.
    Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med 1999;43:217–23.PubMedGoogle Scholar
  5. 5.
    Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Bombardieri E, Maccauro M, De Deckere E, et al. Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 2001;12:S51–61.CrossRefPubMedGoogle Scholar
  7. 7.
    Troncone L, Rufini V. Radiolabeled metaiodobenzylguanidine in the diagnosis of neural crest tumors. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. Edinburgh: Churchill Livingstone; 1998. p. 843–57.Google Scholar
  8. 8.
    Staalman CR, Hoefnagel CA. Imaging of neuroblastomas and metastasis. In: Brodeur GM, Sawada T, Tsuchida Y, Voute PA, editors. neuroblastoma. Amsterdam: Elsevier; 2000. p. 303–29.Google Scholar
  9. 9.
    International Commission on Radiological Protection. Publication 80: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol. 28. Oxford: Pergamon Press; 1998. p. 3.Google Scholar
  10. 10.
    Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 1998;42:93–112.PubMedGoogle Scholar
  11. 11.
    International Commission on Radiological Protection. Publication 53: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol. 18. Oxford: Pergamon Press; 1987. p. 1–4.Google Scholar
  12. 12.
    Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med 2003;47:31–40.PubMedGoogle Scholar
  13. 13.
    Perel Y, Conway J, Kletzel M, et al. Clinical impact and prognostic value of metaiodobenzylguanidine imaging in children with metastatic neuroblastoma. J Pediatr Hematol Oncol 1999;21:13–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Wafelman AR, Hoefnagel CA, Maes RA, et al. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interaction, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545–59.CrossRefPubMedGoogle Scholar
  15. 15.
    Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging 2003;30:B45–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2007;34:796–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Solanki KK, Bomanji J, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Khafagi FA, Shapiro B, Fig LM, et al. Labetalol reduces iodine-131-MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 1989;30:481–9.PubMedGoogle Scholar
  19. 19.
    Giammarile F, Boneu A, Edeline V, et al. Guide de réalisation de la scintigraphie à la meta-iodobenzylguanidine (MIBG) en oncologie pédiatrique. Med Nucl 2000;24:35–41.Google Scholar
  20. 20.
    Sokole EB, Plachcinska A, Britten A. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010;37:662–71.CrossRefGoogle Scholar
  21. 21.
    Meyer-Rochow GY, Schembri GP, Benn DE, Sywak MS, Delbridge LW, Robinson BG, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (mIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol 2010;17:392–400.CrossRefPubMedGoogle Scholar
  22. 22.
    Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med 1996;37:1464–8.PubMedGoogle Scholar
  23. 23.
    Rufini V, Giordano A, Di Giuda D, et al. 123MIBG scintigraphy in neuroblastoma: a comparison between planar and SPECT imaging. Q J Nucl Med 1995;4:25–8.Google Scholar
  24. 24.
    Lynn MD, Shapiro B, Sisson JC, et al. Portrayal of pheochromocytoma and normal human adrenal medulla by m-[123I]iodobenzylguanidine: concise communication. J Nucl Med 1984;25(4):436–40.PubMedGoogle Scholar
  25. 25.
    Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 1999;6(3):119–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Okuyama C, Sakane N, Yoshida T, Shima K, Kurosawa H, Kumamoto K, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med 2002;43(9):1234–40.PubMedGoogle Scholar
  27. 27.
    Peggi L, Liberti E, Pansini G, et al. Pitfalls in scintigraphic detection of neuroendocrine tumors. Eur J Nucl Med 1992;19:214–8.Google Scholar
  28. 28.
    Gordon I, Peters AM, Gutman A, et al. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med 1990;31:129–34.PubMedGoogle Scholar
  29. 29.
    Ady N, Zucker JM, Asselain B, Edeline V, Bonnin F, Michon J, et al. A new 123I-MIBG whole body scan scoring method – application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer 1995;31A(2):256–61.CrossRefPubMedGoogle Scholar
  30. 30.
    Suc A, Lumbroso J, Rubie H, Hattchouel JM, Boneu A, Rodary C, et al. Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer 1996;77(4):805–11.CrossRefPubMedGoogle Scholar
  31. 31.
    Katzenstein HM, Cohn SL, Shore RM, Bardo DM, Haut PR, Olszewski M, et al. Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol 2004;22(19):3909–15.CrossRefPubMedGoogle Scholar
  32. 32.
    Messina JA, Cheng SC, Franc BL, Charron M, Shulkin B, To B, et al. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer 2006;47(7):865–74.CrossRefPubMedGoogle Scholar
  33. 33.
    Taal BG, Hoefnagel CA, Valdes Olmos, et al. Combined diagnostic imaging with 131I-MIBG and 111In-pentetreotide in carcinoid tumours. Eur J Cancer 1996;32:1924–32.CrossRefGoogle Scholar
  34. 34.
    Zuetenhorst JM, Hoefnagel CA, Boot H, et al. Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun 2002;23:735–41.CrossRefPubMedGoogle Scholar
  35. 35.
    Adams S, Baum R, Rink T, et al. Limited value of fluorine-18fluoodeoxyglucose PET for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998;25:79–83.CrossRefPubMedGoogle Scholar
  36. 36.
    Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (mIBG) scan and [18F]FDG positron emission tomography to evaluate response after iodine-131 mIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27:5343–49.CrossRefPubMedGoogle Scholar
  37. 37.
    Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19:3397–405.PubMedGoogle Scholar
  38. 38.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S. 123I-mIBG versus 18F-FDG in neuroblastoma: which is better, or which can be eliminated? J Nucl Med 2010;51:331.CrossRefGoogle Scholar
  39. 39.
    Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-mIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-l-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-mIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:4757–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–91.CrossRefPubMedGoogle Scholar

Copyright information

© EANM 2010

Authors and Affiliations

  • Emilio Bombardieri
    • 1
  • Francesco Giammarile
    • 2
  • Cumali Aktolun
    • 3
  • Richard P. Baum
    • 4
  • Angelika Bischof Delaloye
    • 5
  • Lorenzo Maffioli
    • 6
  • Roy Moncayo
    • 7
  • Luc Mortelmans
    • 8
  • Giovanna Pepe
    • 9
  • Sven N. Reske
    • 10
  • Maria R. Castellani
    • 1
  • Arturo Chiti
    • 9
    Email author
  1. 1.Fondazione IRCCS Istituto Nazionale dei TumoriMilanoItaly
  2. 2.Médecine nucléaire, CHLS, Hospices Civils de Lyon, and Faculté de MédecineLyonFrance
  3. 3.Tiro-Center Tiroid MerkeziIstanbulTurkey
  4. 4.PET CenterBad BerkaGermany
  5. 5.CHUVLausanneSwitzerland
  6. 6.Ospedale LegnanoMilanItaly
  7. 7.University of InnsbruckInnsbruckAustria
  8. 8.University UZ GasthuisbergLouvainBelgium
  9. 9.Istituto Clinico HumanitasRozzano (MI)Italy
  10. 10.University of UlmUlmGermany

Personalised recommendations