Skip to main content

Advertisement

Log in

Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In vitro it has been shown that the functional activity of P-glycoprotein (Pgp), an important drug transporter responsible for multidrug resistance, can be strongly increased by extracellular acidosis. Here mitogen-activated protein kinases (MAPK) (p38, ERK1/2) seem to play an important role for signal transduction. However, it is unclear whether these effects are also relevant in vivo.

Methods

With the newly developed PET tracer Schiff base-based 68Ga-MFL6.MZ the functional Pgp activity was visualized under acidic conditions and during inhibition of MAPKs non-invasively by means of microPET in rat tumours. Tumours were acidified either by inspiratory hypoxia (8% O2) or by injection of lactic acid. Inhibitors of the MAPK were injected intratumourally.

Results

With increasing tumour volume the tumour pH changed from 7.0 to 6.7 and simultaneously the Pgp activity increased almost linearly. When the tumour was acidified by direct lactic acid injection the PET tracer uptake was reduced by 20% indicating a higher transport rate out of the cells. Changing the inspiratory O2 fraction to 8% dynamically led to a reduction of extracellular pH and in parallel to a decrease of tracer concentration. While inhibition of the p38 pathway reduced the Pgp transport rate, inhibition of ERK1/2 had practically no impact.

Conclusion

An acidic extracellular environment significantly stimulates the Pgp activity. The p38 MAPK pathway plays an important role for Pgp regulation in vivo, whereas ERK1/2 is of minor importance. From these results new strategies for overcoming multidrug resistance (e.g. reducing tumour acidosis, inhibition of p38) may be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Pgp:

P-glycoprotein

References

  1. Konerding MA, Malkusch W, Klapthor B, van Ackern C, Fait E, Hill SA, et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 1999;80:724–32.

    Article  CAS  PubMed  Google Scholar 

  2. Thews O, Kelleher DK, Vaupel P. Disparate responses of tumour vessels to angiotensin II: tumour volume-dependent effects on perfusion and oxygenation. Br J Cancer 2000;83:225–31.

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49:6449–65.

    CAS  PubMed  Google Scholar 

  4. Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266–76.

    Article  PubMed  Google Scholar 

  5. Mueller-Klieser W, Vaupel P, Streffer C. Energy status of malignant tumors in patients and experimental animals. In: Molls M, Vaupel P, editors. Blood perfusion and microenvironment of human tumors. Berlin: Springer; 1998. p. 193–207.

    Google Scholar 

  6. Stubbs M. Tumor pH. In: Molls M, Vaupel P, editors. Blood perfusion and microenvironment of human tumors. Berlin: Springer; 1998. p. 113–20.

    Google Scholar 

  7. Bush RS, Jenkin RD, Allt WE, Beale FA, Bean H, Dembo AJ, et al. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl 1978;3:302–6.

    CAS  PubMed  Google Scholar 

  8. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638–48.

    Article  CAS  PubMed  Google Scholar 

  9. Sanna K, Rofstad EK. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 1994;58:258–62.

    Article  CAS  PubMed  Google Scholar 

  10. Teicher BA, Holden SA, Al-Achi A, Herman TS. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res 1990;50:3339–44.

    CAS  PubMed  Google Scholar 

  11. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev 1994;13:139–68.

    Article  CAS  PubMed  Google Scholar 

  12. Chaplin DJ, Horsman MR, Trotter MJ, Siemann DW. Therapeutic significance of microenvironmental factors. In: Molls M, Vaupel P, editors. Blood perfusion and microenvironment of human tumors. Berlin: Springer; 1998. p. 131–43.

    Google Scholar 

  13. Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 2003;66:1207–18.

    Article  CAS  PubMed  Google Scholar 

  14. Higgins CF. ABC transporters: physiology, structure and mechanism—an overview. Res Microbiol 2001;152:205–10.

    Article  CAS  PubMed  Google Scholar 

  15. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 2003;55:3–29.

    Article  CAS  PubMed  Google Scholar 

  16. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene 2003;22:7512–23.

    Article  CAS  PubMed  Google Scholar 

  17. Ledoux S, Yang R, Friedlander G, Laouari D. Glucose depletion enhances P-glycoprotein expression in hepatoma cells: role of endoplasmic reticulum stress response. Cancer Res 2003;63:7284–90.

    CAS  PubMed  Google Scholar 

  18. Lee G, Piquette-Miller M. Cytokines alter the expression and activity of the multidrug resistance transporters in human hepatoma cell lines; analysis using RT-PCR and cDNA microarrays. J Pharm Sci 2003;92:2152–63.

    Article  CAS  PubMed  Google Scholar 

  19. Wartenberg M, Gronczynska S, Bekhite MM, Saric T, Niedermeier W, Hescheler J, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids by hyperthermia and reactive oxygen species. Int J Cancer 2005;113:229–40.

    Article  CAS  PubMed  Google Scholar 

  20. Yang JM, Sullivan GF, Hait WN. Regulation of the function of P-glycoprotein by epidermal growth factor through phospholipase C. Biochem Pharmacol 1997;53:1597–604.

    Article  CAS  PubMed  Google Scholar 

  21. Lotz C, Kelleher DK, Gassner B, Gekle M, Vaupel P, Thews O. Role of the tumor microenvironment in the activity and expression of the p-glycoprotein in human colon carcinoma cells. Oncol Rep 2007;17:239–44.

    CAS  PubMed  Google Scholar 

  22. Sauvant C, Nowak M, Wirth C, Schneider B, Riemann A, Gekle M, et al. Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int J Cancer 2008;123:2532–42.

    Article  CAS  PubMed  Google Scholar 

  23. Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia 2006;8:143–52.

    Article  CAS  PubMed  Google Scholar 

  24. Fellner M, Dillenburg W, Buchholz HG, Bausbacher N, Schreckenberger M, Rösch F et al. Radiopharmaceutical 68 Ga tracer for assessing p-glycoprotein (Pgp) activity in vivo. Mol Imaging Biol 2010; submitted.

  25. Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin DJ, Double JA, et al. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (2nd edit.). Br J Cancer 1998;77:1–10.

    Google Scholar 

  26. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med 2007;48:1741–8.

    Article  CAS  PubMed  Google Scholar 

  27. Thews O, Wolloscheck T, Dillenburg W, Kraus S, Kelleher DK, Konerding MA, et al. Microenvironmental adaptation of experimental tumours to chronic vs acute hypoxia. Br J Cancer 2004;91:1181–9.

    CAS  PubMed  Google Scholar 

  28. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002;62:3387–94.

    CAS  PubMed  Google Scholar 

  29. Fukumura D, Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 2007;101:937–49.

    Article  CAS  PubMed  Google Scholar 

  30. Thews O, Kelleher DK, Lecher B, Vaupel P. Blood flow, oxygenation, metabolic and energetic status in different clonal subpopulations of a rat rhabdomyosarcoma. Int J Oncol 1998;13:205–11.

    CAS  PubMed  Google Scholar 

  31. Kelleher DK, Thews O, Vaupel P. Hypoxyradiotherapy: lack of experimental evidence for a preferential radioprotective effect on normal versus tumor tissue as shown by direct oxygenation measurements in experimental sarcomas. Radiother Oncol 1997;45:191–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kalliomäki T, Hill RP. Effects of tumour acidification with glucose+MIBG on the spontaneous metastatic potential of two murine cell lines. Br J Cancer 2004;90:1842–9.

    PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Deutsche Krebshilfe (grant 109136).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Thews.

Additional information

Part of this study forms the doctoral theses of W. Dillenburg and M. Fellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thews, O., Dillenburg, W., Fellner, M. et al. Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer. Eur J Nucl Med Mol Imaging 37, 1935–1942 (2010). https://doi.org/10.1007/s00259-010-1504-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1504-3

Keywords

Navigation