Skip to main content
Log in

Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The purpose of these guidelines is to offer nuclear medicine teams a framework that could prove helpful in daily practice. The guidelines include information related to the indications, acquisition, processing and interpretation of bone scans in children, focusing primarily on 99mTc-labelled diphosphonate scintigraphy, and also recommendations with regard to the emerging use of PET with 18F-fluoride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. Bone scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2003;30(12):BP99–106.

    PubMed  Google Scholar 

  2. Donohoe KJ, Brown ML, Collier BD, Carretta RF, Henkin RE, O’Mara RE, et al. Procedure guideline for bone scintigraphy, version 3.0. Society of Nuclear Medicine; 2003. http://interactive.snm.org/docs/pg_ch34_0403.pdf.

  3. Hahn K, Fischer S, Colarinha P, Gordon I, Mann M, Piepsz A, et al. Guidelines for bone scintigraphy in children. Eur J Nucl Med 2001;28(3):BP42–7.

    CAS  PubMed  Google Scholar 

  4. Gordon I, Hahn K, Fischer S. Atlas of bone scintigraphy in the pathological paediatric skeleton. Berlin: Springer; 1996.

    Google Scholar 

  5. Hahn K, Fischer S, Gordon I: Atlas of bone scintigraphy in the developing paediatric skeleton. Berlin: Springer; 1993 (out of print; new edition as digital and hardcopy versions to be published by IAEA).

    Google Scholar 

  6. Howman-Giles R, Uren R. Multifocal osteomyelitis in childhood: review by radionuclide bone scan. Clin Nucl Med 1992;17:274–8.

    Article  CAS  PubMed  Google Scholar 

  7. Hughes LO, Aronson J. Skeletal infection in children. Curr Opin Pediatr 1994;6:90–3.

    Article  CAS  PubMed  Google Scholar 

  8. Read MT. Single photon emission computed tomography (SPECT) scanning for adolescent back pain. A sine qua non? Br J Sports Med 1994;28:56–7.

    Article  CAS  PubMed  Google Scholar 

  9. Reuland P, Aicher KP, Dopfer R, Handgretinger R, Klingebiel Th, Niethammer D, et al. Differential diagnosis of childhood osteomyelitis – classification according to scintigraphic, radiologic and magnetic resonance tomographic characteristics. Nuklearmedizin 1996;35:68–77.

    CAS  PubMed  Google Scholar 

  10. Roach PJ, Connolly LP, Zurakowski D, Treves ST. Osteoid osteoma: comparative utility of high-resolution planar and pinhole magnification scintigraphy. Pediatr Radiol 1996;26:222–5.

    Article  CAS  PubMed  Google Scholar 

  11. Rossmüller B, Hahn K, Fischer S. Bone scintigraphy in non-neoplastic diseases in children. Q J Nucl Med 1998;42:133–47.

    PubMed  Google Scholar 

  12. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol 1992;158:9–18.

    CAS  PubMed  Google Scholar 

  13. Dogan AS, Conway JJ, Miller JH, Grier D, Bhattathiry MM, Mitchell CS. Detection of bone lesions in Langerhans cell histiocytosis: complementary roles of scintigraphy and conventional radiography. J Pediatr Hematol Oncol 1996;18:51–8.

    Article  CAS  PubMed  Google Scholar 

  14. Edeline V, Frouin F, Bazin JP, Di Paola M, Kalifa C, Contesso G, et al. Factor analysis as a means of determining response to chemotherapy in patients with osteogenic sarcoma. Eur J Nucl Med 1993;20:1175–85.

    Article  CAS  PubMed  Google Scholar 

  15. Franzius C, Sciuk J, Daldrup-Link HE, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med 2000;27(9):1305–11.

    Article  CAS  PubMed  Google Scholar 

  16. Korholz D, Wirtz I, Vosberg H, Ruther W, Jurgens H, Gobel U. The role of bone scintigraphy in the follow-up of osteogenic sarcoma. Eur J Cancer 1996;32A:461–4.

    Article  CAS  PubMed  Google Scholar 

  17. Rees CR, Siddiqui AR, duCret R. The role of bone scintigraphy in osteogenic sarcoma. Skeletal Radiol 1986;15(5):365–7.

    CAS  PubMed  Google Scholar 

  18. Sathekge MM, Clauss RP. Criteria and quantification of fibrous dysplasia on MDP scanning. Nuklearmedizin 1995;34:229–31.

    CAS  PubMed  Google Scholar 

  19. Cavailloles F, Bok B, Bensahel H. Bone scintigraphy in the diagnosis and follow up of Perthes’ disease. Eur J Nucl Med 1982;7(7):327–30.

    Article  CAS  PubMed  Google Scholar 

  20. Conway JJ. A scintigraphic classification of Legg-Calvé-Perthes disease. Semin Nucl Med 1993;23:274–95.

    Article  CAS  PubMed  Google Scholar 

  21. Kaniklides C, Sahlstedt B, Lonnerholm T, Moberg A. Conventional scintigraphy and bone scintigraphy in the prognostic evaluation of Legg-Calvé-Perthes disease. Acta Radiol 1996;37:561–6.

    Article  CAS  PubMed  Google Scholar 

  22. Oshima M, Yoshihasi Y, Ito K, Asai H, Fukatsu H, Sakuma S. Initial stage of Legg-Calvé-Perthes disease: comparison of three-phase bone scintigraphy and SPECT with MR imaging. Eur J Radiol 1992;15:107–12.

    Article  CAS  PubMed  Google Scholar 

  23. Theissen P, Rutt J, Linden A, Smolarz K, Voth E, Schicha H. The early diagnosis of Perthes disease: the value of bone scintigraphy and magnetic resonance imaging in comparison with X-ray findings. Nuklearmedizin 1991;30:265–71.

    CAS  PubMed  Google Scholar 

  24. Gelfand MJ, Strife JL, Graham EJ, Crawford AH. Bone scintigraphy in slipped capital femoral epiphysis. Clin Nucl Med 1983;8(12):613–5.

    Article  CAS  PubMed  Google Scholar 

  25. Bellah RD, Summerville DA, Treves ST, Micheli LJ. Low-back pain in adolescent athletes: detection of stress injury to the pars interarticularis with SPECT. Radiology 1991;180:509–12.

    CAS  PubMed  Google Scholar 

  26. Chan WL, Carolan MG, Fernandes VB, Abbati DP. Planar versus SPET imaging in the assessment of condylar growth. Nucl Med Commun 2000;21(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  27. Jaudes PK. Comparison of radiography and radionuclide bone scanning in the detection of child abuse. Pediatrics 1984;73:166–8.

    CAS  PubMed  Google Scholar 

  28. Sty JR, Starshak RJ. The role of bone scintigraphy in the evaluation of the suspected abused child. Radiology 1983;146:369–75.

    CAS  PubMed  Google Scholar 

  29. Wilcox JR, Moniot AL, Green JP. Bone scanning in the evaluation of exercise-related stress injuries. Radiology 1977;123:667–73.

    Google Scholar 

  30. Conway JJ, Collins M, Tanz RR, Radkowski MA, Anandappa E, Hernandez R, et al. The role of bone scintigraphy in detecting child abuse. Semin Nucl Med 1993;23:321–33.

    Article  CAS  PubMed  Google Scholar 

  31. Lisbona R, Rosenthall L. Role of radionuclide imaging in osteoid osteoma. AJR Am J Roentgenol 1979;132(1):77–80.

    CAS  PubMed  Google Scholar 

  32. Epstein DA, Levin EJ. Bone scintigraphy in hereditary multiple exostoses. AJR Am J Roentgenol 1978;130(2):331–3.

    CAS  PubMed  Google Scholar 

  33. George J, Acharya SV, Bandgar TR, Menon PS, Shah NS. Primary hyperparathyroidism in children and adolescents. Indian J Pediatr 2010;77(2):175–8.

    Article  PubMed  Google Scholar 

  34. Gordon I, Peters AM, Nunn R. The symptomatic hip in childhood: scintigraphic findings in the presence of a normal radiograph. Skeletal Radiol 1987;16:383–6.

    Article  CAS  PubMed  Google Scholar 

  35. Itoh K, Hashimoto T, Shigenobu K, Yamane S, Tamaki N. Bone SPET of symptomatic lumbar spondylolysis. Nucl Med Commun 1996;17:389–96.

    Article  CAS  PubMed  Google Scholar 

  36. Mandell GA, Harcke HT. Scintigraphy of spinal disorders in adolescents. Skeletal Radiol 1993;22:393–401.

    Article  CAS  PubMed  Google Scholar 

  37. Ljung B. The child in diagnostic nuclear medicine. Eur J Nucl Med 1997;24:683–90.

    CAS  PubMed  Google Scholar 

  38. Pintelon H, Jonckheer MH, Piepsz A. Paediatric nuclear medicine procedures: routine sedation or management of anxiety? Nucl Med Commun 1994;15:664–6.

    CAS  PubMed  Google Scholar 

  39. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F; EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2009;36(3):540–1.

    Article  Google Scholar 

  40. International Commission on Radiological Protection. ICRP Publication 80: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP 2000;28(3).

  41. Spence LD, Kaar K, McCabe J, O'Neill M. The role of bone scintigraphy with pinhole collimation in the evaluation of symptomatic paediatric hips. Clin Radiol 1994;49:820–3.

    Article  CAS  PubMed  Google Scholar 

  42. Fahey FH, Palmer MR, Strauss KJ, Zimmerman RE, Badawi RD, Treves ST. Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 2007;243:96–104.

    Article  PubMed  Google Scholar 

  43. Hardoff R, Gips S. Ischiopubic synchondrosis. Normal finding, increased pubic uptake on bone Scintigraphy. Clin Nucl Med 1992;17(2):139.

    Article  CAS  PubMed  Google Scholar 

  44. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 2008;49:68–78.

    Article  PubMed  Google Scholar 

  45. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 2007;27:277–82.

    PubMed  Google Scholar 

  46. Laverick S, Bounds G, Wong WL. [18F]-Fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg 2009;47(3):196–9.

    Article  CAS  PubMed  Google Scholar 

  47. Drubach LA, Sapp MV, Laffin S, Kleinman PK. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 2008;38(7):776–9.

    Article  PubMed  Google Scholar 

  48. Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999;17(8):2381–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego De Palma.

Additional information

Disclaimer

These guidelines summarize the views of the Paediatric Committee of the European Association of Nuclear Medicine and reflect recommendations for which the EANM cannot be held responsible. These recommendations should be taken in the context of “good practice” of nuclear medicine and do not substitute for national and international legal or regulatory provisions. The guidelines have been reviewed by the EANM Dosimetry Committee, the EANM Physics Committee and the EANM Radiopharmacy Committee.

The guidelines have been reviewed by the EANM Dosimetry Committee, the EANM Oncology Committee, the EANM Physics Committee and the EANM Radiopharmacy Committee. The guidelines have been brought to the attention of the National Societies of Nuclear Medicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stauss, J., Hahn, K., Mann, M. et al. Guidelines for paediatric bone scanning with 99mTc-labelled radiopharmaceuticals and 18F-fluoride. Eur J Nucl Med Mol Imaging 37, 1621–1628 (2010). https://doi.org/10.1007/s00259-010-1492-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1492-3

Keywords

Navigation