Skip to main content

Advertisement

Log in

The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Affibody molecules represent a novel class of high-affinity agents for radionuclide tumour targeting. Fusion of the Affibody molecules with an albumin-binding domain (ABD) enables modification of the blood kinetics of the Affibody molecules and reduction of the renal dose. 177Lu-CHX-A″-DTPA-ABD-(ZHER2:342)2, an anti-HER2 Affibody molecule-ABD fusion protein has earlier demonstrated promising results in treatment of HER2-expressing micro-xenografts in mice. The use of the in vivo generator 114mIn/114In as a label for ABD-fused Affibody molecules would create preconditions for efficient treatment of both micrometastases (due to conversion and Auger electrons of 114mIn) and bulky tumours (due to high-energy beta particles from the daughter nuclide 114In). The goal of this study was to investigate if different chelators influence the biodistribution of ABD-(ZHER2:342)2 and to find an optimal chelator for attachment of 114mIn to the Affibody molecule-ABD fusion protein.

Methods

Isothiocyanate derivatives of Bz-DOTA and CHX-A″-DTPA were coupled to ABD-(ZHER2:342)2. The cellular processing of both conjugates was studied in vitro. The influence of chelators on the biodistribution was investigated in mice using double isotope (114mIn and 111In) labelling.

Results

The apparent affinity of CHX-A″-DTPA-ABD-(ZHER2:342)2 and Bz-DOTA-ABD-(ZHER2:342)2 to the extracellular domain of HER2 was similar, 13.5 and 15.0 pM, respectively. It was found that both conjugates were internalized by SKOV-3 cells. The use of CHX-A″-DTPA provided better cellular retention of the radioactivity, better tumour accumulation of radioactivity and better tumour to organ dose ratios than Bz-DOTA-ABD-(ZHER2:342)2.

Conclusion

CHX-A″-DTPA is more suitable for 114mIn labelling of Affibody molecule-ABD fusion proteins for radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003;52:281–96.

    PubMed  CAS  Google Scholar 

  2. Jain M, Venkatraman G, Batra SK. Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res 2007;13:1374–82.

    Article  PubMed  CAS  Google Scholar 

  3. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.

    Article  PubMed  CAS  Google Scholar 

  4. Nilsson FY, Tolmachev V. Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 2007;10:167–75.

    PubMed  CAS  Google Scholar 

  5. Orlova A, Feldwisch J, Abrahmsén L, Tolmachev V. Update: affibody molecules for molecular imaging and therapy for cancer. Cancer Biother Radiopharm 2007;22:573–84.

    Article  PubMed  CAS  Google Scholar 

  6. Fortin MA, Orlova A, Malmström PU, Tolmachev V. Labelling chemistry and characterization of [90Y/177Lu]-DOTA-ZHER2:342-3 Affibody molecule, a candidate agent for locoregional treatment of urinary bladder carcinoma. Int J Mol Med 2007;19:285–91.

    PubMed  CAS  Google Scholar 

  7. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 2007;67:2773–82.

    Article  PubMed  CAS  Google Scholar 

  8. Wheldon TE, O’Donoghue JA, Barrett A, Michalowski AS. The curability of tumours of differing size by targeted radiotherapy using 131I or 90Y. Radiother Oncol 1991;21:91–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kassis AI. The amazing world of auger electrons. Int J Radiat Biol 2004;80:789–803.

    Article  PubMed  CAS  Google Scholar 

  10. de Jong M, Breeman WAP, Valkema R, Bernard BE, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46:13S–7S.

    PubMed  Google Scholar 

  11. Aas M, Mardirossian G, Griffin TW, Salimi AR, Ito T, Bushe HS, et al. Long-term biodistribution in tumored mice of murine and chimeric B72.3-IgG antibody radiolabeled with 114mIn via both DTPA and a macrocyclic chelator. J Nucl Biol Med 1992;36:33–40.

    PubMed  CAS  Google Scholar 

  12. Tolmachev V, Bernhardt P, Forssell-Aronsson E, Lundqvist H. 114mIn, a candidate for radionuclide therapy: low-energy cyclotron production and labeling of DTPA-D-phe-octreotide. Nucl Med Biol 2000;27:183–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sabbah EN, Kadouche J, Ellison D, Finucane C, Decaudin D, Mather SJ. In vitro and in vivo comparison of DTPA- and DOTA-conjugated antiferritin monoclonal antibody for imaging and therapy of pancreatic cancer. Nucl Med Biol 2007;34:293–304.

    Article  PubMed  CAS  Google Scholar 

  14. Froidevaux S, Heppeler A, Eberle AN, Meier AM, Häusler M, Beglinger C, et al. Preclinical comparison in AR4–2J tumor-bearing mice of four radiolabeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-somatostatin analogs for tumor diagnosis and internal radiotherapy. Endocrinology 2000;141:3304–12.

    Article  PubMed  CAS  Google Scholar 

  15. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 2008;52:166–73.

    PubMed  CAS  Google Scholar 

  16. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 2007;34:757–78.

    Article  PubMed  CAS  Google Scholar 

  17. Orlova A, Rosik D, Sandström M, Lundqvist H, Einarsson L, Tolmachev V. Evaluation of [111/114mIn]-CHX-A"-DTPA-ZHER2:342, an affibody ligand conjugate for targeting of HER2-expressing malignant tumors. Q J Nucl Med Mol Imaging 2007;51:314–23.

    PubMed  CAS  Google Scholar 

  18. Lundberg E, Höidén-Guthenberg I, Larsson B, Uhlén M, Gräslund T. Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 2007;319:53–63.

    Article  PubMed  CAS  Google Scholar 

  19. Orlova A, Tran T, Widström C, Engfeldt T, Eriksson Karlström A, Tolmachev V. Pre-clinical evaluation of [111In]-benzyl-DOTA-Z(HER2:342), a potential agent for imaging of HER2 expression in malignant tumors. Int J Mol Med 2007;20:397–404.

    PubMed  CAS  Google Scholar 

  20. Schubiger PA, Alberto R, Smith A. Vehicles, chelators, and radionuclides: choosing the “building blocks” of an effective therapeutic radioimmunoconjugate. Bioconjug Chem 1996;7:165–79.

    Article  PubMed  CAS  Google Scholar 

  21. Knapp FF Jr, Mirzadeh S. The continuing important role of radionuclide generator systems for nuclear medicine. Eur J Nucl Med 1994;21:1151–65.

    Article  PubMed  Google Scholar 

  22. Horak E, Hartmann F, Garmestani K, Wu C, Brechbiel M, Gansow OA, et al. Radioimmunotherapy targeting of HER2/neu oncoprotein on ovarian tumor using lead-212-DOTA-AE1. J Nucl Med 1997;38:1944–50.

    PubMed  CAS  Google Scholar 

  23. Su FM, Beaumier P, Axworthy D, Atcher R, Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. Nucl Med Biol 2005; 32:741–7.

    Article  PubMed  CAS  Google Scholar 

  24. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Alpha-particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm 2005;20:557–68.

    Article  PubMed  CAS  Google Scholar 

  25. McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot 2002;57:841–7.

    Article  PubMed  CAS  Google Scholar 

  26. Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med 2004;45:129–37.

    PubMed  CAS  Google Scholar 

  27. Dahle J, Borrebaek J, Melhus KB, Bruland OS, Salberg G, Olsen DR, et al. Initial evaluation of 227Th-p-benzyl-DOTA-rituximab for low-dose rate alpha-particle radioimmunotherapy. Nucl Med Biol 2006;33:271–9.

    Article  PubMed  CAS  Google Scholar 

  28. Melhus KB, Larsen RH, Stokke T, Kaalhus O, Selbo PK, Dahle J. Evaluation of the binding of radiolabeled rituximab to CD20-positive lymphoma cells: an in vitro feasibility study concerning low-dose-rate radioimmunotherapy with the alpha-emitter 227Th. Cancer Biother Radiopharm 2007;22:469–79.

    Article  PubMed  CAS  Google Scholar 

  29. Rösch F, Brockmann J, Lebedev NA, Qaim SM. Production and radiochemical separation of the Auger electron emitter 140Nd. Acta Oncol 2000;39:727–30.

    Article  PubMed  Google Scholar 

  30. Yakushev EA, Kovalík A, Filosofov DV, Korolev NA, Lebedev NA, Lubashevski AV, et al. An experimental comparison of the K- and L-Auger electron spectra generated in the decays of 140Nd and 111In. Appl Radiat Isot 2005;62:451–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lubberink M, Lundqvist H, Tolmachev V. Production, PET performance and dosimetric considerations of 134Ce/134La, an Auger electron and positron-emitting generator for radionuclide therapy. Phys Med Biol 2002;47:615–29.

    Article  PubMed  CAS  Google Scholar 

  32. Jaggi JS, Kappel BJ, McDevitt MR, Sgouros G, Flombaum CD, Cabassa C, et al. Efforts to control the errant products of a targeted in vivo generator. Cancer Res 2005;65:4888–95.

    Article  PubMed  CAS  Google Scholar 

  33. Jaggi JS, Seshan SV, McDevitt MR, Sgouros G, Hyjek E, Scheinberg DA. Mitigation of radiation nephropathy after internal alpha-particle irradiation of kidneys. Int J Radiat Oncol Biol Phys 2006;64:1503–12.

    PubMed  Google Scholar 

  34. Orlova A, Bruskin A, Sjöström A, Lundqvist H, Gedda L, Tolmachev V. Cellular processing of 125I- and 111In-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 2000;27:827–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by a grant from the Swedish Cancer Society. The authors thank Dr. Fredrik Y Frejd (Affibody AB) for stimulating discussions. We thank also Veronika Eriksson and the staff of the animal facility of Rudbeck Laboratory for technical assistance. The authors also wish to thank the personnel of the Svedberg Laboratory, Uppsala, Sweden, especially Lars Einarsson, for technical support in the production of 114mIn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolmachev, V., Wållberg, H., Andersson, K. et al. The influence of Bz-DOTA and CHX-A″-DTPA on the biodistribution of ABD-fused anti-HER2 Affibody molecules: implications for 114mIn-mediated targeting therapy. Eur J Nucl Med Mol Imaging 36, 1460–1468 (2009). https://doi.org/10.1007/s00259-009-1134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1134-9

Keywords

Navigation