Skip to main content
Log in

Comparison of subcutaneous and intraperitoneal injection of d-luciferin for in vivo bioluminescence imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We compared subcutaneous (SC) injection and intraperitoneal (IP) injection of d-luciferin for in vivo bioluminescence imaging (BLI) to determine the utility of SC injection.

Methods

Mice bearing SC tumours stably expressing firefly luciferase underwent in vivo BLI using SC and IP injection of d-luciferin. BLI studies were repeated at an interval of 3 h using a given injection route to assess repeatability and using different injection routes to assess correlation. In mice bearing both SC and IP tumours, BLI was performed successively using intravenous (IV), SC, and IP injection of d-luciferin. Haematological malignancy model mice underwent BLI using SC and IP injection.

Results

In SC tumours, the peak time was slightly shorter and the peak signal was greater using SC injection than using IP injection. The repeatability of determining peak signals was comparable between the two injection routes, and a good correlation was observed between them. In mice bearing both SC and IP tumours, signals from IP tumours relative to those from SC tumours were much greater using IP injection than using IV or SC injection. In the haematological malignancy model, signals from the spleen relative to those from the bone marrow were greater using IP injection than using SC injection.

Conclusion

In addition to rare injection failure, the IP injection of d-luciferin led to the overestimation of signals from IP tissues. For BLI, SC injection was shown to be a convenient alternative to IP injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002;38:2128–36.

    Article  PubMed  CAS  Google Scholar 

  2. Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000;2:41–52.

    Article  PubMed  CAS  Google Scholar 

  3. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci USA 2004;101:221–6.

    Article  PubMed  CAS  Google Scholar 

  4. Nakajima A, Seroogy CM, Sandora MR, Tarner IH, Costa GL, Taylor-Edwards C, et al. Antigen-specific T cell-mediated gene therapy in collagen-induced arthritis. J Clin Invest 2001;107:1293–301.

    Article  PubMed  CAS  Google Scholar 

  5. Hutchens M, Luker GD. Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 2007;9:2315–22.

    Article  PubMed  CAS  Google Scholar 

  6. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002;8:891–7.

    PubMed  CAS  Google Scholar 

  7. Carlsen H, Alexander G, Austenaa LM, Ebihara K, Blomhoff R. Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res 2004;551:199–211.

    PubMed  CAS  Google Scholar 

  8. Massoud TF, Paulmurugan R, De A, Ray P, Gambhir SS. Reporter gene imaging of protein-protein interactions in living subjects. Curr Opin Biotechnol 2007;18:31–7.

    Article  PubMed  CAS  Google Scholar 

  9. Edinger M, Hoffmann P, Contag CH, Negrin RS. Evaluation of effector cell fate and function by in vivo bioluminescence imaging. Methods 2003;31:172–9.

    Article  PubMed  CAS  Google Scholar 

  10. Baba S, Cho SY, Ye Z, Cheng L, Engles JM, Wahl RL. How reproducible is bioluminescent imaging of tumor cell growth? Single time point versus the dynamic measurement approach. Mol Imaging 2007;6:315–22.

    PubMed  Google Scholar 

  11. Paroo Z, Bollinger RA, Braasch DA, Richer E, Corey DR, Antich PP, et al. Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 2004;3:117–24.

    Article  PubMed  Google Scholar 

  12. Keyaerts M, Verschueren J, Bos TJ, Tchouate-Gainkam LO, Peleman C, Breckpot K, et al. Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission. Eur J Nucl Med Mol Imaging 2008;35:999–1007.

    Article  PubMed  CAS  Google Scholar 

  13. Lee KH, Byun SS, Paik JY, Lee SY, Song SH, Choe YS, et al. Cell uptake and tissue distribution of radioiodine labelled d-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 2003;24:1003–9.

    Article  PubMed  CAS  Google Scholar 

  14. Zeamari S, Rumping G, Floot B, Lyons S, Stewart FA. In vivo bioluminescence imaging of locally disseminated colon carcinoma in rats. Br J Cancer 2004;90:1259–64.

    Article  PubMed  CAS  Google Scholar 

  15. Lu C, Kamat AA, Lin YG, Merritt WM, Landen CN, Kim TJ, et al. Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma. Clin Cancer Res 2007;13:4209–17.

    Article  PubMed  CAS  Google Scholar 

  16. Buchhorn HM, Seidl C, Beck R, Saur D, Apostolidis C, Morgenstern A, et al. Non-invasive visualisation of the development of peritoneal carcinomatosis and tumour regression after 213Bi-radioimmunotherapy using bioluminescence imaging. Eur J Nucl Med Mol Imaging 2007;34:841–9.

    Article  PubMed  Google Scholar 

  17. Lockley M, Fernandez M, Wang Y, Li NF, Conroy S, Lemoine N, et al. Activity of the adenoviral E1A deletion mutant dl922-947 in ovarian cancer: comparison with E1A wild-type viruses, bioluminescence monitoring, and intraperitoneal delivery in icodextrin. Cancer Res 2006;66:989–98.

    Article  PubMed  CAS  Google Scholar 

  18. Bryant MJ, Chuah TL, Luff J, Lavin MF, Walker DG. A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line. J Clin Neurosci 2008;15:545–51.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang Y, Bressler JP, Neal J, Lal B, Bhang HE, Laterra J, et al. ABCG2/BCRP expression modulates D-Luciferin based bioluminescence imaging. Cancer Res 2007;67:9389–97.

    Article  PubMed  CAS  Google Scholar 

  20. Gross S, Piwnica-Worms D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods 2005;2:607–14.

    Article  PubMed  CAS  Google Scholar 

  21. Inoue Y, Tojo A, Sekine R, Soda Y, Kobayashi S, Nomura A, et al. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals. Eur J Nucl Med Mol Imaging 2006;33:557–65.

    Article  PubMed  Google Scholar 

  22. Copelan EA, McGuire EA. The biology and treatment of acute lymphoblastic leukemia in adults. Blood 1995;85:1151–68.

    PubMed  CAS  Google Scholar 

  23. Li S, Ilaria RL Jr, Million RP, Daley GQ, Van Etten RA. The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999;189:1399–412.

    Article  PubMed  CAS  Google Scholar 

  24. Inoue Y, Izawa K, Tojo A, Nomura Y, Sekine R, Oyaizu N, et al. Monitoring of disease progression by bioluminescence imaging and magnetic resonance imaging in an animal model of hematologic malignancy. Exp Hematol 2007;35:407–15.

    Article  PubMed  CAS  Google Scholar 

  25. Inoue Y, Izawa K, Kiryu S, Kobayashi S, Tojo A, Ohtomo K. Bioluminescent evaluation of the therapeutic effects of total body irradiation in a murine hematological malignancy model. Exp Hematol 2008;36:1634–41.

    Article  Google Scholar 

  26. Wang W, El-Deiry WS. Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model. Cancer Biol Ther 2003;2:196–202.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, Y., Kiryu, S., Izawa, K. et al. Comparison of subcutaneous and intraperitoneal injection of d-luciferin for in vivo bioluminescence imaging. Eur J Nucl Med Mol Imaging 36, 771–779 (2009). https://doi.org/10.1007/s00259-008-1022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1022-8

Keywords

Navigation