Skip to main content
Log in

18F-Fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4).

Methods

The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. 18F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance≥1 cm).

Results

Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected.

Conclusion

PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kemppainen J, Fujimoto T, Kalliokoski KK, Viljanen T, Nuutila P, Knuuti J. Myocardial and skeletal muscle glucose uptake during exercise in humans. J Physiol 2002;542:403–12.

    Article  PubMed  CAS  Google Scholar 

  2. Selberg O, Muller MJ, van den Hoff J, Burchert W. Use of positron emission tomography for the assessment of skeletal muscle glucose metabolism. Nutrition 2002;18:323–8.

    Article  PubMed  CAS  Google Scholar 

  3. Fujimoto T, Kemppainen J, Kalliokoski KK, Nuutila P, Ito M, Knuuti J. Skeletal muscle glucose uptake response to exercise in trained and untrained men. Med Sci Sports Exerc 2003;35:777–83.

    Article  PubMed  CAS  Google Scholar 

  4. Kalliokoski KK, Langberg H, Ryberg AK, Scheede-Bergdahl C, Doessing S, Kjaer A, et al. The effect of dynamic knee-extension exercise on patellar tendon and quadriceps femoris muscle glucose uptake in humans studied by positron emission tomography. J Appl Physiol 2005;99:1189–92.

    Article  PubMed  Google Scholar 

  5. Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP. Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol 2006;101:196–201.

    Article  PubMed  CAS  Google Scholar 

  6. Chow PL, Stout DB, Komisopoulou E, Chatziioannou AF. A method of image registration for small animal, multi-modality imaging. Phys Med Biol 2006;51:379–90.

    Article  PubMed  Google Scholar 

  7. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 2005;46:455–63.

    PubMed  Google Scholar 

  8. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP. Positron-emission tomography with [18F]fluorodeoxyglucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 2000;126:549–59.

    Article  PubMed  CAS  Google Scholar 

  9. Gu J, Yamamoto H, Fukunaga H, Danno K, Takemasa I, Ikeda M, et al. Correlation of GLUT-1 overexpression, tumor size, and depth of invasion with 18F-2-fluoro-2-deoxy-D-glucose uptake by positron emission tomography in colorectal cancer. Dig Dis Sci 2006;51:2198–205.

    Article  PubMed  CAS  Google Scholar 

  10. de Geus-Oei LF, van Krieken JH, Aliredjo RP, Krabbe PF, Frielink C, Verhagen AF, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007;55:79–87.

    Article  PubMed  Google Scholar 

  11. Gaster M. Fibre type dependent expression of glucose transporters in human skeletal muscles. APMIS Suppl 2007:6–47.

  12. Stuart CA, Yin D, Howell ME, Dykes RJ, Laffan JJ, Ferrando AA. Hexose transporter mRNAs for GLUT4, GLUT5, and GLUT12 predominate in human muscle. Am J Physiol Endocrinol Metab 2006;291:E1067–73.

    Article  PubMed  CAS  Google Scholar 

  13. Neufer PD, Dohm GL. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle. Am J Physiol 1993;265:C1597–603.

    PubMed  CAS  Google Scholar 

  14. Kraniou GN, Cameron-Smith D, Hargreaves M. Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol 2006;101:934–7.

    Article  PubMed  CAS  Google Scholar 

  15. Longo N, Bell GI, Shuster RC, Griffin LD, Langley SD, Elsas LJ. Human fibroblasts express the insulin-responsive glucose transporter (GLUT4). Trans Assoc Am Physicians 1990;103:202–13.

    PubMed  CAS  Google Scholar 

  16. Ploug T, Galbo H, Vinten J, Jorgensen M, Richter EA. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am J Physiol 1987;253:E12–E20.

    PubMed  CAS  Google Scholar 

  17. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9.

    Article  PubMed  CAS  Google Scholar 

  18. Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, et al. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 2007;102:573–81.

    Article  PubMed  CAS  Google Scholar 

  19. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002;3:RESEARCH0034.

    Article  PubMed  Google Scholar 

  20. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004;64:5245–50.

    Article  PubMed  CAS  Google Scholar 

  21. Wojtaszewski JF, Jakobsen AB, Ploug T, Richter EA. Perfused rat hindlimb is suitable for skeletal muscle glucose transport measurements. Am J Physiol 1998;274:E184–91.

    PubMed  CAS  Google Scholar 

  22. Roy D, Johannsson E, Bonen A, Marette A. Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle. Am J Physiol 1997;273:E688–94.

    PubMed  CAS  Google Scholar 

  23. Johannsson E, Jensen J, Gundersen K, Dahl HA, Bonen A. Effect of electrical stimulation patterns on glucose transport in rat muscles. Am J Physiol 1996;271:R426–31.

    PubMed  CAS  Google Scholar 

  24. Kalliokoski KK, Bojsen-Moller J, Seppanen M, Johansson J, Kjaer M, Teras M, et al. Contraction-induced [18F]-fluoro-deoxy-glucose uptake can be measured in human calf muscle using high-resolution PET. Clin Physiol Funct Imaging 2007;27:239–41.

    Article  PubMed  Google Scholar 

  25. Aslesen R, Engebretsen EM, Franch J, Jensen J. Glucose uptake and metabolic stress in rat muscles stimulated electrically with different protocols. J Appl Physiol 2001;91:1237–44.

    PubMed  CAS  Google Scholar 

  26. Ihlemann J, Ploug T, Hellsten Y, Galbo H. Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol 2000;279:E862–67.

    CAS  Google Scholar 

  27. Boushel R, Langberg H, Green S, Skovgaard D, Bulow J, Kjaer M. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 2000;524:305–13.

    Article  PubMed  CAS  Google Scholar 

  28. Phillips T, Ferraz I, Bell S, Clegg PD, Carter SD, Mobasheri A. Differential regulation of the GLUT1 and GLUT3 glucose transporters by growth factors and pro-inflammatory cytokines in equine articular chondrocytes. Vet J 2005;169:216–22.

    Article  PubMed  CAS  Google Scholar 

  29. O’Doherty RM, Bracy DP, Osawa H, Wasserman DH, Granner DK. Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise. Am J Physiol 1994;266:E171–78.

    PubMed  Google Scholar 

  30. Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 2005;19:1146–48.

    PubMed  Google Scholar 

  31. Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA, Pedersen BK. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol 2000;528:157–63.

    Article  PubMed  CAS  Google Scholar 

  32. Han XX, Handberg A, Petersen LN, Ploug T, Galbo H. Stability of GLUT-1 and GLUT-4 expression in perfused rat muscle stimulated by insulin and exercise. J Appl Physiol 1995;78:46–52.

    PubMed  CAS  Google Scholar 

  33. Silva JL, Giannocco G, Furuya DT, Lima GA, Moraes PA, Nachef S, et al. NF-kappaB, MEF2A, MEF2D and HIF1-a involvement on insulin- and contraction-induced regulation of GLUT4 gene expression in soleus muscle. Mol Cell Endocrinol 2005;240:82–93.

    Article  PubMed  CAS  Google Scholar 

  34. Jozsa L, Balint JB, Reffy A, Demel Z. Histochemical and ultrastructural study of adult human tendon. Acta Histochem 1979;65:250–57.

    PubMed  CAS  Google Scholar 

  35. Kvist M, Jozsa L, Jarvinen MJ, Kvist H. Chronic Achilles paratenonitis in athletes: a histological and histochemical study. Pathology 1987;19:1–11.

    Article  PubMed  CAS  Google Scholar 

  36. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 2005;20:260–70.

    CAS  Google Scholar 

  37. Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 2000;279:E806–814.

    PubMed  CAS  Google Scholar 

  38. Heinemeier KM, Olesen JL, Haddad F, Langberg H, Kjaer M, Baldwin KM, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol 2007;582:1303–316.

    Article  PubMed  CAS  Google Scholar 

  39. Cho S, Li Q, Ahn S, Bai B, Leahy RM. Iterative image reconstruction using inverse fourier rebinning for fully 3-D PET. IEEE Trans Med Imaging 2007;26:347–58.

    Article  PubMed  Google Scholar 

  40. Huang TF, Perry SM, Soslowsky LJ. The effect of overuse activity on Achilles tendon in an animal model: a biomechanical study. Ann Biomed Eng 2004;32:336–41.

    Article  PubMed  Google Scholar 

  41. Glazebrook MA, Wright JR Jr, Langman M, Stanish WD, Lee JM. Histological analysis of achilles tendons in an overuse rat model. J Orthop Res 2008;26:840–6.

    Article  PubMed  Google Scholar 

  42. Meyer PT, Circiumaru V, Cardi CA, Thomas DH, Bal H, Acton PD. Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function. Eur J Nucl Med Mol Imaging 2006;33:948–54.

    Article  PubMed  Google Scholar 

  43. Haaparanta M, Paul R, Gronroos T, Bergman J, Kamarainen EL, Solin O. Microdialysis and 2-[18F]fluoro-2-deoxy-D-glucose (FDG): a study on insulin action on FDG transport, uptake and metabolism in rat muscle, liver and adipose tissue. Life Sci 2003;73:1437–51.

    Article  PubMed  CAS  Google Scholar 

  44. Kim J, Herrero P, Sharp T, Laforest R, Rowland DJ, Tai YC, et al. Minimally invasive method of determining blood input function from PET images in rodents. J Nucl Med 2006;47:330–36.

    PubMed  Google Scholar 

  45. Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET. J Nucl Med 2003;44:1592–98.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Danish Medical Research Council, the Novo Nordisk Foundation, the Lundbeck Foundation and the A. P. Møller Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorthe Skovgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skovgaard, D., Kjaer, M., El-Ali, H. et al. 18F-Fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon. Eur J Nucl Med Mol Imaging 36, 859–868 (2009). https://doi.org/10.1007/s00259-008-1020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1020-x

Keywords

Navigation