Skip to main content


Log in

The value of 18F-Choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript



Patients with persistent elevated PSA and repeated negative prostate biopsy, that means having the prostate biopsied at multiple times, were investigated with 18F-choline PET/CT to delineate prostate cancer and guide renewed prostate biopsy.


Twenty patients with elevated PSA and negative prostate biopsies underwent 18F-choline PET/CT. We performed an early examination of the pelvic region 3-5 min after application. After 30 minutes a whole body PET/CT examination was performed. Image analysis was performed visually and by semi-quantitative analysis calculating the maximum standardised uptake value (SUVmax). 18F-choline uptake was defined as focal, multifocal or inhomogeneous. After the 18F-choline PET/CT, all patients underwent a repeated prostate biopsy, and in the cases where a focal or multifocal uptake was found, the biopsy was guided by the result of the examination.


Qualitative image analysis revealed focal 18F-choline uptake in 13 out of 20 patients. In five patients, prostate cancer was revealed by repeated aspiration biopsy. None of the patients with a multifocal or inhomogeneous 18F-choline uptake had a malignant neoplasm in the prostate. Semiquantitative analysis performed with SUVmax was not helpful in the discrimination of malignancy but showed high values also in benign prostate diseases, as well as in normal prostate tissue. The dual-phase protocol delivered no clear benefit in discriminating malignancy from benign alterations.


The use of 18F-choline cannot be generally recommended for localising prostate cancer; however, in highly selected patients, we found useful additional information. In 25% of patients, 18F-choline PET/CT allowed the identification of neoplastic prostatic zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Gronberg H. Prostate cancer epidemiology. Lancet. 2003;361(9360):859-64.

    Article  PubMed  Google Scholar 

  2. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324(17):1156-61. Erratum in: N Engl J Med 1991;325(18):1324.

    Article  CAS  PubMed  Google Scholar 

  3. Brawer MK, Chetner MP, Beatie J, Buchner DM, Vessella RL, Lange PH. Screening for prostatic carcinoma with prostate specific antigen. J Urol. 1992;147(3 Pt 2):841-5.

    CAS  PubMed  Google Scholar 

  4. Roscigno M, Scattoni V, Bertini R, Pasta A, Montorsi F, Rigatti P. Diagnosis of prostate cancer. State of the art. Minerva Urol Nefrol. 2004;56(2):123-45.

    CAS  PubMed  Google Scholar 

  5. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 2004;350(22):2239-46.

    Article  CAS  PubMed  Google Scholar 

  6. Ellis WJ, Brawer MK. Repeat prostate needle biopsy: who needs it? J Urol. 1995;153(5):1496-8.

    Article  CAS  PubMed  Google Scholar 

  7. Fleshner NE, O'Sullivan M, Fair WR. Prevalence and predictors of a positive repeat transrectal ultrasound guided needle biopsy of the prostate. J Urol. 1997;158(2):505-8. discussion 508-9.

    Article  CAS  PubMed  Google Scholar 

  8. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR. Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol. 1998 Apr;159(4):1247-50.

    Article  CAS  PubMed  Google Scholar 

  9. Kravchick S, Cytron S, Peled R, Altshuler A, Ben-Dor D. Using gray-scale and two different techniques of color Doppler sonography to detect prostate cancer. Urology. 2003;61(5):977-81.

    Article  PubMed  Google Scholar 

  10. Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging-clinicopathologic study. Radiology. 1999;213(2):473-80.

    Article  CAS  PubMed  Google Scholar 

  11. Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrun A. Positron emission tomography in urological oncology. J Urol. 1998;159(2):347-56.

    Article  CAS  PubMed  Google Scholar 

  12. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199(3):751-6. Jun.

    Article  CAS  PubMed  Google Scholar 

  13. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39(6):990-5.

    CAS  PubMed  Google Scholar 

  14. Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296(3):580-3.

    Article  CAS  PubMed  Google Scholar 

  15. Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999 Jan 1;59(1):80-4.

    CAS  PubMed  Google Scholar 

  16. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol. 2002;168(1):273-80.

    Article  PubMed  Google Scholar 

  17. Schroder FH, van der Cruijsen-Koeter I, de Koning HJ, Vis AN, Hoedemaeker RF, Kranse R. Prostate cancer detection at low prostate specific antigen. J Urol. 2000;163(3):806-12.

    Article  CAS  PubMed  Google Scholar 

  18. Keetch DW, Catalona WJ, Smith DS. Serial prostatic biopsies in men with persistently elevated serum prostate specific antigen values. J Urol. 1994;151(6):1571-4.

    CAS  PubMed  Google Scholar 

  19. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992;5(5):303-24.

    Article  CAS  PubMed  Google Scholar 

  20. Nakagami K, Uchida T, Ohwada S, Koibuchi Y, Suda Y, Sekine T, Morishita Y. Increased choline kinase activity and elevated phosphocholine levels in human colon cancer. Jpn J Cancer Res. 1999;90(4):419-24.

    Article  CAS  PubMed  Google Scholar 

  21. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001;61(1):110-7.

    CAS  PubMed  Google Scholar 

  22. DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med. 2002;43(1):92-6.

    CAS  PubMed  Google Scholar 

  23. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47(2):262-9.

    PubMed  Google Scholar 

  24. Hakalahti L, Vihko P, Henttu P, Autio-Harmainen H, Soini Y, Vihko R. Evaluation of PAP and PSA gene expression in prostatic hyperplasia and prostatic carcinoma using northern-blot analyses, in situ hybridization and immunohistochemical stainings with monoclonal and bispecific antibodies. Int J Cancer. 1993;55(4):590-7.

    Article  CAS  PubMed  Google Scholar 

  25. Wyss MT, Weber B, Honer M, Spath N, Ametamey SM, Westera G, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 2004;43:187-99.

    Google Scholar 

  26. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235(2):623-8.

    Article  PubMed  Google Scholar 

  27. True LD, Berger RE, Rothman I, Ross SO, Krieger JN. Prostate histopathology and the chronic prostatitis/chronic pelvic pain syndrome: a prospective biopsy study. J Urol. 1999;162(6):2014-8.

    Article  CAS  PubMed  Google Scholar 

  28. Shukla-Dave A, Hricak H, Eberhardt SC, Olgac S, Muruganandham M, Scardino PT, et al. Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings-initial observations. Radiology. 2004;231(3):717-24.

    Article  PubMed  Google Scholar 

  29. Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol. 2002;4(4):267-73.

    Article  PubMed  Google Scholar 

  30. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31(3):317-24.

    Article  CAS  PubMed  Google Scholar 

  31. Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of (11)C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging. 2007;34(1):45-53.

    Article  PubMed  Google Scholar 

  32. Crawford ED, Miller GJ, Labrie F, Hirano D, Batuello J, Glode LM. Prostate cancer pathology, screening, and epidemiology. Rev Urol. 2001;3(Suppl2):S2-S10.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Igerc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igerc, I., Kohlfürst, S., Gallowitsch, H.J. et al. The value of 18F-Choline PET/CT in patients with elevated PSA-level and negative prostate needle biopsy for localisation of prostate cancer. Eur J Nucl Med Mol Imaging 35, 976–983 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: