Skip to main content

Advertisement

Log in

Decreased radioiodine uptake of FRTL-5 cells after 131I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In radioiodine therapy the “stunning phenomenon” is defined as a reduction of radioiodine uptake after diagnostic application of 131I. In the current study, we established an in vitro model based on the “Fisher rat thyrocyte cell line no. 5” (FRTL-5) to investigate the stunning.

Methods

TSH-stimulated FRTL-5 cells were incubated with 131I. Time-dependent 131I uptake and the viability of FRTL-5 cells were evaluated at 4–144 h after radioiodine application. All data was corrected for number of viable cells, half life and 131I concentration. Sodium iodide symporter (NIS) and the housekeeping gene (β-actin, GAPDH) levels were quantified by quantitative polymerase chain reaction (qPCR). Additionally, immunohistochemical staining (IHC) of NIS on the cell membrane was carried out.

Results

FRTL-5 monolayer cell cultures showed a specific maximum uptake of 131I 24–48 h after application. Significantly decreased 131I uptake values were observed after 72–144 h. The decrease in radioiodine uptake was correlated with decreasing mRNA levels of NIS and housekeeping genes. In parallel, unlike in controls, IHC staining of NIS on FRTL-5 cells declined significantly after 131I long-term incubation.

Conclusions

It could be demonstrated that during 131I incubation of FRTL-5 cells, radioiodine uptake decreased significantly. Simultaneously decreasing levels of NIS mRNA and protein expression suggest a NIS-associated mechanism. Since mRNA levels of housekeeping genes decreased, too, the reduced NIS expression might be provoked by a cell cycle arrest. Our investigations recommend the FRTL-5 model as a valuable tool for further molecular biological investigations of the stunning phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cholewinski SP, Yoo KS, Klieger PS, O'Mara RE. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. J Nucl Med. 2000;41:198–02.

    Google Scholar 

  2. Hilditch TE, Dempsey MF, Bolster AA, McMenemin RM, Reed NS. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic 131I and 123I. Eur J Nucl Med. 2002;29:783–8.

    Article  CAS  Google Scholar 

  3. Lassmann M, Luster M, Hanscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med. 2004;45:619–25.

    PubMed  Google Scholar 

  4. Lees W, Mansberg R, Roberts J, Towson J, Chua E, Turtle J. The clinical effects of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. Eur J Nucl Med Mol Imaging. 2002;29:421–7.

    Google Scholar 

  5. Luster M, Sherman SI, Skarulis MC, Reynolds JR, Lassmann M, Hanscheid H, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1371–7.

    Article  PubMed  CAS  Google Scholar 

  6. Medvedec M. Seeking a radiobiological explanation for thyroid stunning. Eur J Nucl Med. 2001;28:393–5.

    Article  PubMed  CAS  Google Scholar 

  7. Morris LF, Waxman AD, Braunstein GD. The nonimpact of thyroid stunning: remnant ablation rates in 131I-scanned and nonscanned individuals. J Clin Endocrinol Metab. 2001;86:3507–11.

    Article  PubMed  CAS  Google Scholar 

  8. Park HM, Perkins OW, Edmondson JW, Schnute RB, Manatunga A. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid. 1994;4:49–54.

    PubMed  CAS  Google Scholar 

  9. Urhan M, Dadparvar S, Mavi A, Houseni M, Chamroonrat W, Alavi A, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging. 2007;34:1012–7.

    Article  PubMed  CAS  Google Scholar 

  10. Wu HS, Hseu HH, Lin WY, Wang SJ, Liu YC. Decreased uptake after fractionated ablative doses of iodine-131. Eur J Nucl Med Mol Imaging. 2005;32:67–73.

    Article  CAS  Google Scholar 

  11. Verburg FA, de Keizer B, Lips CJM, Zelissen PMJ, de Klerk JMH. Prognostic significance of successful ablation with radioiodine of differentiated thyroid cancer patients. Eur J Endocrinol. 2005;152:33–7.

    Article  PubMed  CAS  Google Scholar 

  12. Dietlein M, Dressler J, Farahati J, Grunwald F, Leisner B, Moser E, et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2). Nuklearmedizin. 2004;43:115–20.

    PubMed  CAS  Google Scholar 

  13. Cooper DS, Doherty GM, Haugen BR, Kloss RT, Lee S, Mandel S, et al. The American Thyroid Association Guidelines Taskforce. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006;16:109–42.

    Article  PubMed  Google Scholar 

  14. Gerard SK, Park HM. Stunning and I-123 Use for Diagnostic Whole Body Scanning. Thyroid. 2006;16:817.

    Article  PubMed  Google Scholar 

  15. Postgard P, Himmelmann J, Lindencrona U, Bhogal N, Wiberg D, Berg G, et al. Stunning of iodide transport by 131I irradiation in cultured thyroid epithelial cells. J Nucl Med. 2002;43:818–34.

    Google Scholar 

  16. Ambesi-Impiombato FS, Parks LAM, Coon HG. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980;77:3455–9.

    Article  PubMed  CAS  Google Scholar 

  17. Weiss SJ, Philip NJ, Grollman EF. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology. 1984;114:1090–8.

    PubMed  CAS  Google Scholar 

  18. Grollman EF, Smolar A, Tombaccini D, Santisteban P. Iodine suppression of iodide uptake in FRTL-5 thyroid cells. Endocrinology. 1986;118:2477–82.

    Article  PubMed  CAS  Google Scholar 

  19. Eng PH, Cardona GR, Previti MC, Chin WW, Braverman LE. Regulation of the sodium iodide symporter by iodide in FRTL-5 cells. Eur J Endocrinol. 2001;144:139–44.

    Article  PubMed  CAS  Google Scholar 

  20. Leer LM, Ossendorp FA, de Vijlder JJM. TSH action on iodination in FRTL-5 cells. Horm Metab Res Suppl. 1990;23:43–6.

    PubMed  CAS  Google Scholar 

  21. Weiss SJ, Philip NJ, Ambesi-Impiombato FS, Grollman EF. Thyrotropin-stimulated iodide transport mediated by cyclic AMP and dependent on protein synthesis. Endocrinology. 1984;114:1099–107.

    PubMed  CAS  Google Scholar 

  22. Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I− symporter. Mechanism, stoichiometry, and specificity. J Biol Chem. 1997;272:27230–8.

    Article  PubMed  CAS  Google Scholar 

  23. Meller B, Deisting W, Wenzel BE, Pethe A, Nadrowitz R, Meller J, et al. Increased Radioiodine Uptake of Thyroid Cell Cultures after External Irradiation. Strahlenther Onkol. 2006;182:30–6.

    Article  PubMed  Google Scholar 

  24. Bauer R. Physikalische Grundlagen der Radioiodtherapie. In: Radiojodtherapie bei Schilddrüsenerkrankungen. Indikationen – Ergebnisse – Nebenwirkungen. pp 3–21. Ed G Buttermann. Frankfurt: pmi;1987.

  25. Wawschinek O, Eber O, Petek W, Wakönig P, Gürakar A. Bestimmung der Harniodausscheidung mittels einer modifizierten Cer-Arsenitmethode. Berichte der ÖGKC. 1985;8:13–5.

    Google Scholar 

  26. Studer H, Ramelli F. Simple goiter and its variants: euthyroid and hyperthyroid multinodular goiters. Endocr Rev. 1982;3:40–61.

    PubMed  CAS  Google Scholar 

  27. Meller B, Haase A, Seyfarth M Richter E, Baehre M. Reduced radioiodine uptake at increased iodine intake and 131I-induced release of “cold” iodine stored in the thyroid. Nuklearmedizin. 2005;44:137–42.

    PubMed  CAS  Google Scholar 

  28. Meller B, von Hof K, Genina E, Deisting W, Meller J, Richter E, et al. Effects of 123I and 131I diagnostic activities and radioiodine therapy on urinary iodine excretion in patients with differentiated thyroid carcinoma. Nuklearmedizin. 2005;44:243–7.

    PubMed  CAS  Google Scholar 

  29. Schomacker K, Wellner U, Scheidhauer K, Gabruk-Szostak B, Fischer T, Steinbach J, et al. Relationship between properties of 131I therapy and radioiodine kinetics. Nuklearmedizin. 1996;35:175–80.

    PubMed  CAS  Google Scholar 

  30. Nuchel C, Boddenberg B, Schicha H. The importance of the radioiodine test for the calculation of the therapeutic dose in benign thyroid diseases. Nuklearmedizin. 1993;32:91–8.

    PubMed  CAS  Google Scholar 

  31. Spitzweg C, Joba W, Morris JC, Heufelder AE. Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid. 1999;9:821–30.

    PubMed  CAS  Google Scholar 

  32. Appelskog IB, Ammerpohl O, Svechnikova IG, Lui WO, Almqvist PM, Ekstrom TJ. Histone deacetylase inhibitor 4-phenylbutyrate suppresses GAPDH mRNA expression in glioma cells. Int J Oncol. 2004;24:1419–25.

    PubMed  CAS  Google Scholar 

  33. Fareh J, Martel R, Kermani P Leclerc G. Cellular effects of beta-particle delivery on vascular smooth muscle cells and endothelial cells: a dose–response study. Circulation. 1999;99:1477–84.

    PubMed  CAS  Google Scholar 

  34. Klett R, Puille M, Steiner D, Bauer R. Einfluss des Applikationsabstandes auf den thyreoidalen Uptake bei zweizeitiger Radiojodtherapie. Nuklearmedizin. 2000;39:A91.

    Google Scholar 

  35. Schumm-Draeger PM. Sodium/iodide symporter (NIS) and cytokines. Exp Clin Endocrinol Diabetes. 2001;109:32–4.

    Article  PubMed  CAS  Google Scholar 

  36. Arturi F, Presta I, Scarpelli D, Bidart J-M, Schlumberger M, Filetti S, et al. Stimulation of iodide uptake by human chorionic gonadotropin in FRTL-5 cells: effects on sodium/iodide symporter gene and protein expression. Eur J Endocrinol. 2002;147:655–61.

    Article  PubMed  CAS  Google Scholar 

  37. Arai M, Tsushima T, Isozaki O Demura H, Shizume K, Emoto N, et al. Effects of transforming growth factor alpha (TGF-alpha) on DNA synthesis and thyrotropin-induced iodine metabolism in cultured porcine thyroid cells. Eur J Endocrinol. 1995;132:242–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Silvia Grammerstorf-Rosche, Angela Oldörp and Detlev Schult for technical assistance. This work was supported in parts by ‘Margarete Markus Charity Foundation’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Meller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meller, B., Gaspar, E., Deisting, W. et al. Decreased radioiodine uptake of FRTL-5 cells after 131I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway. Eur J Nucl Med Mol Imaging 35, 1204–1212 (2008). https://doi.org/10.1007/s00259-007-0666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0666-0

Keywords

Navigation