Skip to main content

Advertisement

Log in

68Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Differentiation between bacterial infection and nonbacterial inflammation remains a diagnostic challenge. Vascular adhesion protein 1 (VAP-1) is a human endothelial protein whose cell surface expression is induced under inflammatory conditions, thus making it a highly promising target molecule for studying inflammatory processes in vivo. We hypothesized that positron emission tomography (PET) with gallium-68-labeled 1,4,7,10-tetraazacyclododecane-N′,N″,N′′′,N″″-tetraacetic acid-peptide targeted to VAP-1 (68Ga-DOTAVAP-P1) could be feasible for imaging the early inflammatory and infectious processes in healing bones.

Materials and methods

Thirty-four Sprague–Dawley rats with diffuse Staphylococcus aureus tibial osteomyelitis and 34 rats with healing cortical bone defects (representing the inflammation stage of healing) were PET imaged using 68Ga-DOTAVAP-P1 as a tracer. In addition, peripheral quantitative computed tomography and conventional radiography were performed. Bone samples for quantitative bacteriology and specimens were also processed for histomorphometry of inflammatory and infectious reactions.

Results

PET imaging showed an uptake of 68Ga-DOTAVAP-P1 in both the osteomyelitic bones and the healing cortical bone defects during the first 36 h after surgery. Thereafter, only the osteomyelitic tibias were delineated by PET. The osteomyelitic and control animals showed a similar uptake of the 68Ga-DOTAVAP-P1 at 24 h, whereas a significant difference was observed at 7 days (p < 0.0001).

Conclusions

The current study showed that PET imaging with the new 68Ga-DOTAVAP-P1 is capable of accurately demonstrating the phase of inflammation in healing bones and the progress of bacterial infection in osteomyelitic bones. Consequently, this novel imaging agent allowed for the differentiation of bone infection due to S. aureus and normal bone healing as soon as 7 days after onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Fluorine-18-FDG PET and technetium-99m antigranulocyte antibody scintigraphy in chronic osteomyelitis. J Nucl Med 1998;39:2145–52.

    PubMed  CAS  Google Scholar 

  2. Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med 2000;27:524–8.

    Article  PubMed  CAS  Google Scholar 

  3. de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am 2001;83-A:651–60.

    PubMed  Google Scholar 

  4. De Winter F, Vogelaers D, Gemmel F, Dierckx RA. Promising role of 18-F-fluoro-d-deoxyglucose positron emission tomography in clinical infectious diseases. Eur J Clin Microbiol Infect Dis 2002;21:247–57.

    Article  PubMed  CAS  Google Scholar 

  5. Koort JK, Mäkinen TJ, Knuuti J, Jalava J, Aro HT. Comparative 18F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 2004;45:1406–11.

    PubMed  Google Scholar 

  6. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998;355 Suppl:S7–21.

    Article  PubMed  Google Scholar 

  7. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001;16:1004–14.

    Article  PubMed  CAS  Google Scholar 

  8. Mäkinen TJ, Lankinen P, Pöyhönen T, Jalava J, Aro HT, Roivainen A. Comparison of 18F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging 2005;32:1259–68.

    Article  PubMed  Google Scholar 

  9. Rennen HJ, Boerman OC, Oyen WJ, Corstens FH. Imaging infection/inflammation in the new millennium. Eur J Nucl Med 2001;28:241–52.

    Article  PubMed  CAS  Google Scholar 

  10. Chianelli M, Mather SJ, Martin-Comin J, Signore A. Radiopharmaceuticals for the study of inflammatory processes: a review. Nucl Med Commun 1997;18:437–55.

    Article  PubMed  CAS  Google Scholar 

  11. Corstens FH, van der Meer JW. Nuclear medicine’s role in infection and inflammation. Lancet 1999;354:765–70.

    Article  PubMed  CAS  Google Scholar 

  12. Signore A, Chianelli M, Bei R, Oyen W, Modesti A. Targeting cytokine/chemokine receptors: a challenge for molecular nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30:149–56.

    Article  PubMed  CAS  Google Scholar 

  13. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 1992;257:1407–9.

    Article  PubMed  CAS  Google Scholar 

  14. Smith DJ, Salmi M, Bono P, Hellman J, Leu T, Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J Exp Med 1998;188:17–27.

    Article  PubMed  CAS  Google Scholar 

  15. Koskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Ylä-Herttuala S, Jalkanen S, et al. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein-1 (VAP-1). Blood 2004;103:3388–95.

    Article  PubMed  CAS  Google Scholar 

  16. Salmi M, Kalimo K, Jalkanen S. Induction and function of vascular adhesion protein-1 at sites of inflammation. J Exp Med 1993;178:2255–60.

    Article  PubMed  CAS  Google Scholar 

  17. Tohka S, Laukkanen M, Jalkanen S, Salmi M. Vascular adhesion protein 1 (VAP-1) functions as a molecular brake during granulocyte rolling and mediates recruitment in vivo. FASEB J 2001;15:373–82.

    Article  PubMed  CAS  Google Scholar 

  18. Rissing JP. Animal models of osteomyelitis. Knowledge, hypothesis, and speculation. Infect Dis Clin North Am 1990;4:377–90.

    PubMed  CAS  Google Scholar 

  19. Mader JT. Animal models of osteomyelitis. Am J Med 1985;78:213–7.

    Article  PubMed  CAS  Google Scholar 

  20. O’Reilly T, Mader JT. Rat model of bacterial osteomyelitis of the tibia. In: Zak O, Sande MA, editors. Handbook of animal models of infection. Bath, Avon, UK: Academic; 1999. pp. 561–75.

    Google Scholar 

  21. Nelson DR, Buxton TB, Luu QN, Rissing JP. The promotional effect of bone wax on experimental Staphylococcus aureus osteomyelitis. J Thorac Cardiovasc Surg 1990;99:977–80.

    PubMed  CAS  Google Scholar 

  22. Rissing JP, Buxton TB, Weinstein RS, Shockley RK. Model of experimental chronic osteomyelitis in rats. Infect Immun 1985;47:581–86.

    PubMed  CAS  Google Scholar 

  23. van Griethuysen A, Bes M, Etienne J, Zbinden R, Kluytmans J. International multicenter evaluation of latex agglutination tests for identification of Staphylococcus aureus. J Clin Microbiol 2001;39:86–9.

    Article  PubMed  Google Scholar 

  24. Petty W, Spanier S, Shuster JJ, Silverthorne C. The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Joint Surg 1985;67-A:1236–44.

    Google Scholar 

  25. Mayer-Kuckuk P, Boskey AL. Molecular imaging promotes progress in orthopedic research. Bone 2006;39:965–77.

    Article  PubMed  CAS  Google Scholar 

  26. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res 1995;10:1272–81.

    Article  PubMed  CAS  Google Scholar 

  27. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003;88:873–84.

    Article  PubMed  CAS  Google Scholar 

  28. Jaakkola K, Nikula T, Holopainen R, Vahasilta T, Matikainen MT, Laukkanen ML, et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol 2000;157:463–71.

    PubMed  CAS  Google Scholar 

  29. Stolen CM, Marttila-Ichihara F, Koskinen K, Yegutkin GG, Turja R, Bono P, et al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 2005;22:105–15.

    Article  PubMed  CAS  Google Scholar 

  30. Salmi M, Jalkanen S. VAP-1: an adhesin and an enzyme. Trends Immunol 2001;22:211–6.

    Article  PubMed  CAS  Google Scholar 

  31. Salmi M, Jalkanen S. Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 2005;5:760–71.

    Article  PubMed  CAS  Google Scholar 

  32. Merinen M, Irjala H, Salmi M, Jaakkola I, Hänninen A, et al. Vascular adhesion protein-1 is involved in both acute and chronic inflammation in the mouse. Am J Pathol 2005;166:793–800.

    PubMed  CAS  Google Scholar 

  33. Yegutkin GG, Salminen T, Koskinen K, Kurtis C, McPherson MJ, Jalkanen S, et al. A peptide inhibitor of vascular adhesion protein-1 (VAP-1) blocks leukocyte-endothelium interactions under shear stress. Eur J Immunol 2004;34:2276–85.

    Article  PubMed  CAS  Google Scholar 

  34. Ledermann HP, Kaim A, Bongartz G, Steinbrich W. Pitfalls and limitations of magnetic resonance imaging in chronic posttraumatic osteomyelitis. Eur Radiol 2000;10:1815–23.

    Article  PubMed  CAS  Google Scholar 

  35. Gratz S, Béhé M, Boerman OC, Kunze E, Schulz H, Eiffert H, et al. 99mTc-E-selectin binding peptide for imaging acute osteomyelitis in a novel rat model. Nucl Med Commun 2001;22:1003–13.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299–308.

    Article  PubMed  CAS  Google Scholar 

  37. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med 2004;45:1519–27.

    PubMed  Google Scholar 

  38. Visvikis D, Cheze-LeRest C, Costa DC, Bomanji J, Gacinovic S, Ell PJ. Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 2001;28:1326–35.

    Article  PubMed  CAS  Google Scholar 

  39. Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med 2001;42:808–17.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the National Technology Agency of Finland (TEKES), the Academy of Finland (grants No. 205757 and No. 103032), the Instrumentarium Foundation, the Turku University Foundation, the Walter and Lisi Wahl Foundation, and the Finnish Cultural Foundation. Petteri Lankinen is a Ph.D. student supported by the Finnish Graduate School for Musculoskeletal Diseases. Tiina Pöyhönen is a Ph.D. student supported by the Drug Discovery Graduate School of the University of Turku. The authors acknowledge Anni Virolainen-Julkunen, M.D., Ph.D., for conducting the PFGE analysis, and Jouni Alin, M.Sc., for statistical consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Roivainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankinen, P., Mäkinen, T.J., Pöyhönen, T.A. et al. 68Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur J Nucl Med Mol Imaging 35, 352–364 (2008). https://doi.org/10.1007/s00259-007-0637-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0637-5

Keywords

Navigation