Skip to main content
Log in

Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with 111In-oxine has been used in preclinical trials. This study aimed to validate 111In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells.

Methods

Murine haematopoietic progenitor cells (106, FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) 111In-oxine and compared with unlabelled controls. Cellular retention of 111In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity.

Results

Labelling efficiency was 75±14%. Cellular retention of incorporated 111In after 48 h was 18±4%. Percentage viability after 48 h was 90±1% (control), 58±7% (low dose) and 48±8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249±51% (control), 42±8% (low dose) and 32±5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6±27.0% ID/g), bone marrow (59.1±16.1% ID/g) and liver (30.3±9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4±21.8% ID/g) after right ventricular injection.

Conclusion

Radiolabelling of haematopoietic progenitor cells with 111In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferrari G, Cusella-De AG, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–30.

    Article  CAS  PubMed  Google Scholar 

  2. Bittner RE, Schofer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 1999;199:391–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390–4.

    CAS  PubMed  Google Scholar 

  4. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775–9.

    Article  CAS  PubMed  Google Scholar 

  5. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779–82.

    Article  CAS  PubMed  Google Scholar 

  6. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  7. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001;105:829–41.

    Article  CAS  PubMed  Google Scholar 

  8. Kocher AA, Schuster MD, Szabolcs MJ, Burkhoff TD, Wang J, Homma S, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430–6.

    Article  CAS  PubMed  Google Scholar 

  9. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913–8.

    Article  PubMed  Google Scholar 

  10. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002;106:3009–17.

    Article  PubMed  Google Scholar 

  11. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004;364:141–8.

    Article  PubMed  Google Scholar 

  12. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 2002;90:284–8.

    Article  CAS  PubMed  Google Scholar 

  13. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103:897–903.

    Article  CAS  PubMed  Google Scholar 

  14. Gao J, Dennis JE, Muzic RF, Lundberg M, Caplan AI. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001;169:12–20.

    Article  CAS  PubMed  Google Scholar 

  15. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003;107:2134–9.

    Article  PubMed  Google Scholar 

  16. Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 2003;24:1149–54.

    Article  CAS  PubMed  Google Scholar 

  17. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, et al. 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 2004;45:512–8.

    CAS  PubMed  Google Scholar 

  18. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290–3.

    Article  PubMed  Google Scholar 

  19. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, et al. Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 2003;108:1302–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Becker W. The contribution of nuclear medicine to the patient with infection. Eur J Nucl Med 1995;22:1195–211.

    Article  CAS  PubMed  Google Scholar 

  21. Smyth JV, Dodd PD, Walker MG. Indium-111 platelet scintigraphy in vascular disease. Br J Surg 1995;82:588–95.

    Article  CAS  PubMed  Google Scholar 

  22. Sharefkin JB, Lather C, Smith M, Rich NM. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces. J Biomed Mater Res 1983;17:345–57.

    Article  CAS  PubMed  Google Scholar 

  23. Budd JS, Bell PR, James RF. Attachment of indium-111 labelled endothelial cells to pretreated polytetrafluoroethylene vascular grafts. Br J Surg 1989;76:1259–61.

    Article  CAS  PubMed  Google Scholar 

  24. Bohnen NI, Charron M, Reyes J, Rubinstein W, Strom SC, Swanson D, et al. Use of indium-111-labeled hepatocytes to determine the biodistribution of transplanted hepatocytes through portal vein infusion. Clin Nucl Med 2000;25:447–50.

    Article  CAS  PubMed  Google Scholar 

  25. Eggert AAO, Schreurs MWJ, Boerman OC, Oyen WJC, de Boer AJ, Punt CJA, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 1999;59:3340–5.

    CAS  PubMed  Google Scholar 

  26. Patterson RB, Mayfield G, Silberstein EB, Kempczinski RF. The potential unreliability of indium 111 oxine labeling in studies of endothelial cell kinetics. J Vasc Surg 1989;10:650–5.

    Article  CAS  PubMed  Google Scholar 

  27. Carr HM, Smyth JV, Rooney OB, Dodd PD, Sharma H, Walker MG. Limitations of in-vitro labeling of endothelial cells with indium-111 oxine. Cell Transplant 1995;4:291–6.

    Article  CAS  PubMed  Google Scholar 

  28. Mortelmans L, Verbruggen A, Malbrain S, Heynen MJ, de Bakker C, Boogaerts M, et al. Evaluation of 111In labelled white blood cells by in vitro functional tests and electron microscopy. Comparison of three labelling methods. Eur J Nucl Med 1988;14:159–64.

    Article  CAS  PubMed  Google Scholar 

  29. Evans CA, Pierce A, Winter SA, Spooncer E, Heyworth CM, Whetton AD. Activation of granulocyte-macrophage colony-stimulating factor and interleukin-3 receptor subunits in a multipotential hematopoietic progenitor cell line leads to differential effects on development. Blood 1999;94:1504–14.

    CAS  PubMed  Google Scholar 

  30. Zhou R, Thomas DH, Qiao H, Bal HS, Choi SR, Alavi A, et al. In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 2005;46:816–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jonsson AC, Jönsson BA, Strand SE, Grafström G, Spanne P. Cell survival after Auger electron emission from stable intracellular indium exposed to monochromatic synchrotron radiation. Acta Oncol 1996;35:947–52.

    Article  CAS  PubMed  Google Scholar 

  32. Hendrikx PJ, Martens CM, Hagenbeek A, Keij JF, Visser JW. Homing of fluorescently labeled murine hematopoietic stem cells. Exp Hematol 1996;24:129–40.

    CAS  PubMed  Google Scholar 

  33. Klonizakis I, Peters AM, Fitzpatrick ML, Kensett MJ, Lewis SM, Lavender JP. Radionuclide distribution following injection of 111Indium-labelled platelets. Br J Haematol 1980;46:595–602.

    Article  CAS  PubMed  Google Scholar 

  34. Wessels P, Heyns AD, Pieters H, Lotter MG, Badenhorst PN. An improved method for the quantification of the in vivo kinetics of a representative population of 111In-labelled human platelets. Eur J Nucl Med 1985;10:522–7.

    CAS  PubMed  Google Scholar 

  35. Peters AM, Saverymuttu SH, Bell RN, Lavender JP. Quantification of the distribution of the marginating granulocyte pool in man. Scand J Haematol 1985;34:111–20.

    Article  CAS  PubMed  Google Scholar 

  36. Saverymuttu SH, Peters AM, Keshavarzian A, Reavy HJ, Lavender JP. The kinetics of 111indium distribution following injection of 111indium labelled autologous granulocytes in man. Br J Haematol 1985;61:675–85.

    Article  CAS  PubMed  Google Scholar 

  37. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 1988;18:253–6.

    Google Scholar 

  38. Danpure HJ, Osman S. Cell labelling and cell damage with indium-111 acetylacetone—an alternative to indium 111 oxine. Br J Radiol 1981;54:597–601.

    Article  CAS  PubMed  Google Scholar 

  39. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003;108:863–8.

    Article  PubMed  Google Scholar 

  40. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198–202.

    Article  PubMed  Google Scholar 

  41. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 2004;17:484–99.

    Article  CAS  PubMed  Google Scholar 

  42. Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 2004;104:3410–2; author reply 3412–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the RWTH Aachen University (START 43/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nowak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, B., Weber, C., Schober, A. et al. Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells. Eur J Nucl Med Mol Imaging 34, 715–721 (2007). https://doi.org/10.1007/s00259-006-0275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0275-3

Keywords

Navigation