Quantification of Parkinson’s disease-related network expression with ECD SPECT

  • Thomas Eckert
  • Koen Van Laere
  • Chengke Tang
  • Daniel E. Lewis
  • Christine Edwards
  • Patrick Santens
  • David Eidelberg
Original article

Abstract

Purpose

Spatial covariance analysis has been used with FDG PET to identify a specific metabolic network associated with Parkinson’s disease (PD). In the current study, we utilized a new, fully automated voxel-based method to quantify network expression in ECD SPECT images from patients with classical PD, patients with multiple system atrophy (MSA), and healthy control subjects.

Methods

We applied a previously validated voxel-based PD-related covariance pattern (PDRP) to quantify network expression in the ECD SPECT scans of 35 PD patients, 15 age- and disease severity-matched MSA patients, and 35 age-matched healthy control subjects. PDRP scores were compared across groups using analysis of variance. The sensitivity and specificity of the prospectively computed PDRP scores in the differential diagnosis of individual subjects were assessed by receiver operating characteristic (ROC) analysis.

Results

PDRP scores were significantly increased (p < 0.001) in the PD group relative to the MSA and control groups. ROC analysis indicated that the overall diagnostic accuracy of the PDRP measures was 0.91 (AUC). The optimal cutoff value was consistent with a sensitivity of 0.97 and a specificity of 0.80 and 0.71 for discriminating PD patients from MSA and normal controls, respectively.

Conclusion

Our findings suggest that fully automated voxel-based network assessment techniques can be used to quantify network expression in the ECD SPECT scans of parkinsonian patients.

Keywords

Imaging Brain SPECT Perfusion Parkinson’s disease Multiple system atrophy 

References

  1. 1.
    Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med 1998;339:1044–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56:33–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Vanacore N. Epidemiological evidence on multiple system atrophy. J Neural Transm 2005;112:1605–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Eckert T, Eidelberg D. The role of functional neuroimaging in the differential diagnosis of idiopathic Parkinson’s disease and multiple system atrophy. Clin Auton Res 2004;14:84–91.PubMedCrossRefGoogle Scholar
  6. 6.
    Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. Neuroimage 2004;21:229–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54:697–702.PubMedGoogle Scholar
  8. 8.
    Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 2003;60:922–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Laere K, Santens P, Bosman T, De Reuck J, Mortelmans L, Dierckx R. Statistical parametric mapping of 99mTc-ECD SPECT in idiopathic Parkinson’s disease and multiple system atrophy with predominant parkinsonian features: correlation with clinical parameters. J Nucl Med 2004;45:933–42.PubMedGoogle Scholar
  10. 10.
    Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. Neurorx 2005;2:361–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma Y, Tang C, Spetsieres P, Dhawan V, Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab 2006; in press.Google Scholar
  13. 13.
    Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, et al. Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 1999;40:1264–9.PubMedGoogle Scholar
  14. 14.
    Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM. Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 2004;22:236–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Asanuma K, Ma Y, Huang C, Carbon-Correll M, Edwards C, Raymond D, et al. The metabolic pathology of dopa-responsive dystonia. Ann Neurol 2005;57:596–600.PubMedCrossRefGoogle Scholar
  16. 16.
    Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 2001;57:2083–8.PubMedGoogle Scholar
  17. 17.
    Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson’s disease. Brain 2006;129:2667–78.PubMedCrossRefGoogle Scholar
  18. 18.
    Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al. Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 2001;124:1601–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Trošt M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. Neuroimage 2006;31:301–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Feigin A, Antonini A, Fukuda M, De Notaris R, Benti R, Pezzoli G, et al. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov Disord 2002;17:1265–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology 1967;17:427–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Wenning GK, Ben Shlomo Y, Magalhaes M, Daniel SE, Quinn NP. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994;117:835–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Laere K, Koole M, Versijpt J, Vandenberghe S, Brans B, D’sAsseler Y, et al. Transfer of normal 99mTc-ECD brain SPET databases between different gamma cameras. Eur J Nucl Med 2001;28:435–49.PubMedCrossRefGoogle Scholar
  24. 24.
    Spetsieris P, Ma Y, Dhawan V, Moeller J, Eidelberg D. Highly automated computer-aided diagnosis of neurological disorders using functional brain imaging. Proc SPIE: Medical Imaging 2006;6144:61445M1–12.Google Scholar
  25. 25.
    Ludbrook J. Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 1998;25:1032–7.PubMedGoogle Scholar
  26. 26.
    Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology 2003;229:3–8.PubMedGoogle Scholar
  27. 27.
    Huang C, Feigin A, Ma Y, Eidelberg D. Imaging measures of longitudinal change in Parkinson’s disease. Neurology 2005;64(6, Suppl 1):A325.Google Scholar
  28. 28.
    Moeller JR, Eidelberg D. Divergent expression of regional metabolic topographies in Parkinson’s disease and normal ageing. Brain 1997;120:2197–206.PubMedCrossRefGoogle Scholar
  29. 29.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J Nucl Med 1995;36:378–83.PubMedGoogle Scholar
  30. 30.
    Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.PubMedGoogle Scholar
  31. 31.
    Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. Early differential diagnosis of Parkinson’s disease with18F-fluorodeoxyglucose and positron emission tomography. Neurology 1995;45:1995–2004.PubMedGoogle Scholar
  32. 32.
    Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol 2000;47:93–100.PubMedCrossRefGoogle Scholar
  33. 33.
    Kobari M, Fukuuchi Y, Shinohara T, Obara K, Nogawa S. Levodopa-induced local cerebral blood flow changes in Parkinson’s disease and related disorders. J Neurol Sci 1995;128:212–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Ma Y, Eckert T, Feigin A, Dhawan V, Eidelberg D. Abnormal metabolic topography in patients with multiple systems atrophy: a FDG PET study. Neurology 2005;64(6, suppl 1):A235.Google Scholar
  35. 35.
    Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson’s disease. Ann Neurol 1993;33:518–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas Eckert
    • 1
    • 2
  • Koen Van Laere
    • 3
  • Chengke Tang
    • 1
  • Daniel E. Lewis
    • 1
  • Christine Edwards
    • 1
  • Patrick Santens
    • 4
  • David Eidelberg
    • 1
    • 5
  1. 1.Center for NeurosciencesThe Feinstein Institute for Medical ResearchManhassetUSA
  2. 2.Department of Neurology IIUniversity of MagdeburgMagdeburgGermany
  3. 3.Division of Nuclear MedicineLeuven University HospitalLeuvenBelgium
  4. 4.Department of NeurologyGhent University HospitalGhentBelgium
  5. 5.Department of NeurologyNorth Shore University Hospital and New York University School of MedicineNew YorkUSA

Personalised recommendations