Skip to main content


Log in

Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript



The value and limitations of 11C-choline PET and PET/CT for the detection of prostate cancer remain controversial. The aim of this study was to investigate the diagnostic efficacy of 11C-choline PET and PET/CT in a large group of patients with suspected prostate cancer.


Fifty-eight patients with clinical suspicion of prostate cancer underwent 11C-choline PET (25/58, Siemens ECAT Exact HR+) or PET/CT (33/58, Philips Gemini) scanning. On average, 500 MBq of 11C-choline was administered intravenously. Studies were interpreted by raters blinded to clinical information and other diagnostic procedures. Qualitative image analysis as well as semiquantitative SUV measurement was carried out. The reference standard was histopathological examination of resection specimens or biopsy.


Prevalence of prostate cancer in this selected patient population was 63.8% (37/58). 11C-choline PET and PET/CT showed a sensitivity of 86.5% (32/37) and a specificity of 61.9% (13/21) in the detection of the primary malignancy. With regard to metastatic spread, PET showed a per-patient sensitivity of 81.8% (9/11) and produced no false positive findings.


Based on our findings, differentiation between benign prostatic changes, such as benign prostatic hyperplasia or prostatitis, and prostate cancer is feasible in the majority of cases when image interpretation is primarily based on qualitative characteristics. SUVmax may serve as guidance. False positive findings may occur due to an overlap of 11C-choline uptake between benign and malignant processes. By providing functional information regarding both the primary malignancy and its metastases, 11C-choline PET may prove to be a useful method for staging prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Sarma AV, Schottenfeld D. Prostate cancer incidence, mortality, and survival trends in the United States: 1981–2001. Semin Urol Oncol 2002;20:3–9.

    Article  PubMed  Google Scholar 

  2. Wefer AE, Hricak H, Vigneron DB, Coakley FV, Lu Y, Wefer J, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 2000;164:400–4.

    Article  PubMed  CAS  Google Scholar 

  3. Wittekind C, Klimpfinger M, Sobin LH. TNM atlas. Berlin Heidelberg New York: Springer; 2004; p. 275–82.

    Google Scholar 

  4. Agus DB, Golde DW, Sgouros G, Ballangrud A, Cordon-Cardo C, Scher HI. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res 1998;58:3009–14.

    PubMed  CAS  Google Scholar 

  5. Seltzer MA, Barbaric Z, Belldegrun A, Naitoh J, Dorey F, Phelps ME, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 1999;162:1322–8.

    Article  PubMed  CAS  Google Scholar 

  6. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med 2002;43:181–6.

    PubMed  CAS  Google Scholar 

  7. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 1996;155:994–8.

    Article  PubMed  CAS  Google Scholar 

  8. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39:990–5.

    PubMed  CAS  Google Scholar 

  9. Larson SM, Morris M, Gunther I, Beattie B, Humm JL, Akhurst TA, et al. Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 2004;45:366–73.

    PubMed  CAS  Google Scholar 

  10. Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 2005;173:66–9; discussion 69.

    Article  PubMed  Google Scholar 

  11. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001;28:117–22.

    Article  PubMed  CAS  Google Scholar 

  12. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 2003;302:898–903.

    Article  PubMed  CAS  Google Scholar 

  13. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2002;29:1380–4.

    Article  PubMed  CAS  Google Scholar 

  14. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 2001;61:3599–603.

    PubMed  CAS  Google Scholar 

  15. Breeuwsma AJ, Pruim J, Jongen MM, Suurmeijer AJ, Vaalburg W, Nijman RJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 2005;32:668–73.

    Article  PubMed  Google Scholar 

  16. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74:214–20.

    Article  PubMed  CAS  Google Scholar 

  17. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005;46:1642–9.

    PubMed  CAS  Google Scholar 

  18. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 2002;42:18–23.

    Article  PubMed  Google Scholar 

  19. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med 2003;44:331–5.

    PubMed  Google Scholar 

  20. Amsellem-Ouazana D, Younes P, Conquy S, Peyromaure M, Flam T, Debre B, et al. Negative prostatic biopsies in patients with a high risk of prostate cancer. Is the combination of endorectal MRI and magnetic resonance spectroscopy imaging (MRSI) a useful tool? A preliminary study. Eur Urol 2005;47:582–6.

    Article  PubMed  Google Scholar 

  21. Yu KK, Scheidler J, Hricak H, Vigneron DB, Zaloudek CJ, Males RG, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 1999;213:481–8.

    PubMed  CAS  Google Scholar 

  22. van Dorsten FA, van der Graaf M, Engelbrecht MR, van Leenders GJ, Verhofstad A, Rijpkema M, et al. Combined quantitative dynamic contrast-enhanced MR imaging and 1H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 2004;20:279–87.

    Article  PubMed  Google Scholar 

  23. Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32:742–8.

    Article  PubMed  CAS  Google Scholar 

  24. Qayyum A, Coakley FV, Lu Y, Olpin JD, Wu L, Yeh BM, et al. Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol 2004;183:1079–83.

    PubMed  Google Scholar 

  25. Kurhanewicz J, Vigneron DB, Hricak H, Parivar F, Nelson SJ, Shinohara K, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 1996;200:489–96.

    PubMed  CAS  Google Scholar 

  26. Heuck A, Scheidler J, Sommer B, Graser A, Muller-Lisse UG, Massmann J. MR imaging of prostate cancer [in German]. Radiologe 2003;43:464–73.

    Article  PubMed  CAS  Google Scholar 

  27. Engelbrecht MR, Jager GJ, Laheij RJ, Verbeek AL, van Lier HJ, Barentsz JO. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 2002;12:2294–302.

    PubMed  Google Scholar 

  28. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004;31:317–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bernhard Scher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scher, B., Seitz, M., Albinger, W. et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34, 45–53 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: