Skip to main content
Log in

Assessment of the short-lived non-pure positron-emitting nuclide 120I for PET imaging

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The non-pure positron-emitting iodine isotope 120I (T 1/2=81 min) is a short-lived alternative to 124I. 120I has a positron abundance more than twice that of 124I and a maximum positron energy of 4 MeV. This study was undertaken to evaluate and characterise the qualitative and quantitative PET imaging of 120I.

Methods

120I was produced via the 120Te(p,n) reaction on highly enriched 120Te. The measurements were done with the Siemens scanner HR+ and the 2D PET scanner GE PC4096+. A cylinder containing three cold inserts and a phantom resembling a human brain slice were used to evaluate half-life, positron abundance and background correction. To analyse the image resolution, a 1-mm tube placed in water was filled with 120I and 18F. Comparisons with 18F, 124I and 123I (measured with SPECT) were made using the Hoffman 3D brain phantom.

Results

The half-life of 81.1 min was reproduced by the PET measurements. The PET-based positron abundance ranged from 47.9% to 55.0%. The reconstructed image resolution found with the HR+ was 5.4 mm FWHM (12.3 mm FWTM), in contrast to 4.6 mm (8.6 mm) when using 18F. Erroneous positive and negative numbers of radioactivity found in the cold inserts became nearly zero when the background of γ-coincidences was corrected for. Images of the Hoffman phantom were inferior to those obtained when 18F or 124I was applied but superior to the 123I-SPECT images.

Conclusion

Our data show that 120I of high radionuclidic purity can be regarded as a suitable nuclide for the PET imaging of radioiodine-labelled pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, et al. SPECT studies of brain tumors with L-[123I]iodo-methyl-tyrosine (123IMT): first clinical results and comparison with PET and 124IMT. J Nucl Med 1990;31:281–286

    PubMed  CAS  Google Scholar 

  2. Carnochan P, Trivedi M, Young H, Eccles S, Potter G, Haynes B, et al. Biodistribution and kinetics of radiolabelled pyrrolidino-4-iodo-tamoxifen: prospects for pharmacokinetic studies using PET. J Nucl Biol Med 1994;38 Suppl 1:96–98

    PubMed  CAS  Google Scholar 

  3. Coenen HH, Dutschka K, Muller SP, Geworski L, Farahati J, Reiners C. N.c.a. radiosynthesis of [123,124I]beta-CIT, plasma analysis and pharmacokinetic studies with SPECT and PET. Nucl Med Biol 1995;22:977–984

    Article  PubMed  CAS  Google Scholar 

  4. Pentlow KS, Graham MC, Lambrecht RM, Daghighian F, Bacharach SL, Bendriem B, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996;37:1557–1562

    PubMed  CAS  Google Scholar 

  5. Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S, et al. Some optimisation studies relevant to the production of high-purity 124I and 120gI at a small-sized cyclotron. Appl Radiat Isot 2003;58:69–78

    Article  PubMed  CAS  Google Scholar 

  6. Butement FDS, Qaim SM. Radioisotopes of iodine and xenon of masses 120 and 121. J Inorg Nucl Chem 1965;27:907–917

    Article  CAS  Google Scholar 

  7. Zweit J, Luthra SK, Brady F, Carnochan P, Ott RJ, Jones T. Iodine-120, a new positron emitting radionuclide for PET radiopharmaceuticals. In: Proceedings of 6th international workshop on targetry and target chemistry. Canada: Vancouver, B.C, August 1995;823

  8. Zweit J, Flower M, Brown A, Carnochan P, Luthra S, Brady F, et al. Iodine-120-MIBG: production and nca labelling of a new PET radiotracer. J Nucl Med 1996;37:874

    Google Scholar 

  9. Mathis A, Lagunas-Solar MC, Sargent T, Yano Y, Vuletich , Harris LJ. A 122Xe-122I generator for remote radio-iodinations. Appl Radiat Isot 1986;37:258–260

    CAS  Google Scholar 

  10. Tárkányi F, Qaim SM, Stöcklin G, Sajjad M, Lambrecht RM. Nuclear reaction cross sections relevant to the production of the 122Xe-122I generator system using highly enriched 124Xe and a medium-sized cyclotron. Appl Radial Isot 1991;42:229–233

    Article  Google Scholar 

  11. Radionuclide transformations, energy and intensity of emissions. Annals of the ICRP, ICRP publication 38. Oxford:Pergamon Press, 1983

  12. Hohn A, Coenen HH, Qaim SM. Positron emission intensity in the decay of 120gI. Radiochim Acta 2000;88:139–141

    Article  CAS  Google Scholar 

  13. Hornshoj P, Erdal BR, Hansen PG, Jonson B, Aleklett K, Nyman G. Beta-strength functions of neutron-deficient isotopes in the xenon and mercury regions. Nucl Phys 1975;15:A239.

    Google Scholar 

  14. Firestone RB. In: Shirley VS, Baglin CM, Chu SYF, Zipkin J, editors. Table of isotopes. 8th edn. New York: Wiley, 1996

    Google Scholar 

  15. Hohn A, Scholten B, Coenen HH, Qaim SM. Excitation functions of (p,xn) reactions on highly enriched 122Te: relevance to the production of 120gI. Appl Radiat Isot 1998;49:93–98

    Article  CAS  Google Scholar 

  16. Hohn A, Coenen HH, Qaim SM. Nuclear data relevant to the production of 120gI via the 120Te(p,n)-process at a small-sized cyclotron. Appl Radiat Isot 1998;49:1493–1496

    Article  CAS  Google Scholar 

  17. Hohn A, Coenen HH, Qaim SM. Excitation functions of 120Te(d,xn)121,120m,gI reactions from threshold up to 13.5 MeV: comparative studies on the production of 120gI. Appl Radiat Isot 2000;52:923–925

    Article  PubMed  CAS  Google Scholar 

  18. Sudar S, Hohn A, Qaim SM. Nuclear model calculations on proton and deuteron induced reactions an 122Te and 120Te with particular reference to the formation of the isomeric states 120m,gI. Appl Radiat Isot 2000;52:937–941

    Article  PubMed  CAS  Google Scholar 

  19. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE. Performance characteristics of an eight-ring whole-body PET scanner. J Assist Comput Tomogr 1990;14:437–445

    Article  CAS  Google Scholar 

  20. Bergstrom M, Erisson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 1983;7:42–50

    Article  PubMed  CAS  Google Scholar 

  21. Brix G, Zaers J, Adam L, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997;38:1614–1623

    PubMed  CAS  Google Scholar 

  22. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981;5:391–400

    Article  PubMed  CAS  Google Scholar 

  23. Watson CC, Newport D, Casey ME, deKemp RA, Beanlands RS, Schmand M. Evaluaton of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Trans Nucl Sci 1997;44:90–97

    Article  Google Scholar 

  24. National Electrical Manufacturers Association. NEMA Standards Publication NU 2–1994. Performance Measurements of Positron Emission Tomographs. Washington, DC: National Electrical Manufacturers Association, 1994

  25. Defrise M, Townsend DW, Clark R. Three-dimensional image reconstruction from complete projections. Phys Med Biol 1989;34:573–583

    Article  PubMed  CAS  Google Scholar 

  26. Lubberink M, Schneider H, Bergstrom M, Lundqvist H. Quantitative imaging and correction for cascade gamma radiation of 76Br with 2D and 3D PET. Phys Med Biol 2002;47:519–534

    Google Scholar 

  27. Herzog H, Tellmann L, Qaim SM, Spellerberg S, Schmid A., Coenen HH. PET quantitation and imaging of the non-pure positron emitting iodine isotope 124I. Appl Radiat Isot 2002;56:673–679

    Article  PubMed  CAS  Google Scholar 

  28. Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30:716–720

    Article  PubMed  CAS  Google Scholar 

  29. Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19:482–490

    PubMed  CAS  Google Scholar 

  30. Langen KJ, Ziemons K, Kiwit JCW, Herzog H, Kuwert T, Bock WJ, et al. 3-[123I]Iodo-α-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997;38:517–522

    PubMed  CAS  Google Scholar 

  31. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999;44:781–789

    Article  PubMed  CAS  Google Scholar 

  32. Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505–5528

    Article  PubMed  CAS  Google Scholar 

  33. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34:2222–2226

    PubMed  CAS  Google Scholar 

  34. Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354–361

    Article  PubMed  CAS  Google Scholar 

  35. Lubberink M, Tolmachev V, Widstrom C, Bruskin A, Lundqvist H, Westlin JE. 110mIn-DTPA-D-Phe1-octreotide for imaging of neuroendocrine tumors with PET. J Nucl Med 2002;43:1391–1397

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help of T. Jacke in the analysis of the PET data, valuable discussions with A. Schmid, and the secretarial assistance of M. Bunn. We thank the crew of the compact cyclotron CV 28 for performing the irradiations, A. Hohn for some preliminary work on the production of 120I, and B. Scholten for some experimental support in radionuclide production. This work was supported in part by DFG grant HE3090/2–1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, H., Qaim, S.M., Tellmann, L. et al. Assessment of the short-lived non-pure positron-emitting nuclide 120I for PET imaging. Eur J Nucl Med Mol Imaging 33, 1249–1257 (2006). https://doi.org/10.1007/s00259-006-0176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0176-5

Keywords

Navigation