Skip to main content

Advertisement

Log in

O-[18F]fluoromethyl-L-tyrosine is a potential tracer for monitoring tumour response to chemotherapy using PET: an initial comparative in vivo study with deoxyglucose and thymidine

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To compare the utility of a new artificial amino acid, O-[18F]fluoromethyl-L-tyrosine ([18F]FMT), for monitoring cancer chemotherapy with deoxyglucose and thymidine.

Methods

[18F]FMT, [14C]deoxyglucose ([14C]DG) and [6-3H]thymidine ([3H]Thd) were applied in this study. A 2.5 mg/kg dose of mitomycin (MMC) was administered to AH272 rat hepatoma-bearing Donryu rats. Tumour uptake of each tracer was measured just before (baseline) and on days 1, 3, 5 and 7 after the MMC administration, 1 h after a mixture of [18F]FMT, [14C]DG and [3H]Thd had been injected, and was shown as DURs (% injected dose/gram tissue normalised for the rat body weight). Dual-tracer macroautoradiographs with [18F]FMT and [14C]DG were also prepared.

Results

The tumour uptake for each tracer decreased earlier than did the tumour size. DURs (mean±SD) at baseline and on days 1, 3, 5 and 7 were as follows: [18F]FMT: 4.68±0.72, 3.34±0.66, 3.13±0.72, 3.42±0.45, 3.01±0.32; [14C]DG: 3.26±0.40, 3.09±0.55, 3.01±0.97, 2.28±0.35, 1.70±0.72; and [3H]Thd: 2.23±0.46, 1.54±0.45, 1.28±0.37, 1.35±0.20, 0.94±0.12. Decrease in [18F]FMT uptake compared with baseline was significant from day 1 (p<0.01), and the decrease in [3H]Thd uptake was also significant on day 1 (p<0.05) and days 3–7 (p<0.01). However, decrease in [14C]DG uptake was only significant from day 5 (p<0.01). Macroautoradiography suggested that the influence of inflammatory cells on the accumulation of [18F]FMT in tumours is smaller than that on the accumulation of [14C]DG.

Conclusion

[18F]FMT uptake shows a rapid and sensitive response to chemotherapy, comparable to that of [3H]Thd, suggesting that it may be applied as a powerful tracer for monitoring of proliferative activity after cancer chemotherapy using PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warburg O. On the origin of cancer cells. Science 1956;123:309–14

    PubMed  CAS  Google Scholar 

  2. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S–93S

    PubMed  CAS  Google Scholar 

  3. Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, et al. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18- fluorodeoxyuridine, L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. J Nucl Med 1991;32:2118–23

    PubMed  CAS  Google Scholar 

  4. Yoshioka T, Takahashi H, Oikawa H, Maeda S, Ido T, Akaizawa T, et al. Influence of chemotherapy on FDG uptake by human cancer xenografts in nude mice. J Nucl Med 1997;38:714–7

    PubMed  CAS  Google Scholar 

  5. Kostakoglu L, Goldsmith SJ. 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med 2003;44:224–39

    PubMed  Google Scholar 

  6. Kostakoglu L, Goldsmith SJ. PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 2004;45:56–68

    PubMed  Google Scholar 

  7. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005;46:983–95

    PubMed  CAS  Google Scholar 

  8. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 1994;35:104–12

    PubMed  CAS  Google Scholar 

  9. Weber G. Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res 1983;43:3466–92

    PubMed  CAS  Google Scholar 

  10. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001;42:432–45

    PubMed  CAS  Google Scholar 

  11. Langstrom B, Antoni G, Gullberg P, Halldin C, Malmborg P, Nagren K, et al. Synthesis of L- and D-[methyl-11C]methionine. J Nucl Med 1987;28:1037–40

    PubMed  CAS  Google Scholar 

  12. Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, et al. Lung tumor imaging by positron emission tomography using C-11 L-methionine. J Nucl Med 1985;26:37–42

    PubMed  CAS  Google Scholar 

  13. Leskinen-Kallio S, Lindholm P, Lapela M, Joensuu H, Nordman E. Imaging of head and neck tumors with positron emission tomography and [11C]methionine. Int J Radiat Oncol Biol Phys 1994;30:1195–9

    PubMed  CAS  Google Scholar 

  14. Lindholm P, Leskinen S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, et al. Carbon-11-methionine PET imaging of malignant melanoma. J Nucl Med 1995;36:1806–10

    PubMed  CAS  Google Scholar 

  15. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13:1470–7

    PubMed  CAS  Google Scholar 

  16. Sato N, Suzuki M, Kuwata N, Kuroda K, Wada T, Beppu T, et al. Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 1999;22:210–4

    Article  PubMed  CAS  Google Scholar 

  17. Laverman P, Boerman OC, Corstens FH, Oyen WJ. Fluorinated amino acids for tumour imaging with positron emission tomography. Eur J Nucl Med Mol Imaging 2002;29:681–90

    Article  PubMed  CAS  Google Scholar 

  18. Coenen HH, Kling P, Stocklin G. Cerebral metabolism of L-[2-18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 1989;30:1367–72

    PubMed  CAS  Google Scholar 

  19. Ishiwata K, Enomoto K, Sasaki T, Elsinga PH, Senda M, Okazumi S, et al. A feasibility study on L-[1-carbon-11]tyrosine and L-[methyl-carbon-11]methionine to assess liver protein synthesis by PET. J Nucl Med 1996;37:279–85

    PubMed  CAS  Google Scholar 

  20. Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205–12

    PubMed  CAS  Google Scholar 

  21. Inoue T, Tomiyoshi K, Higuichi T, Ahmed K, Sarwar M, Aoyagi K, et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 1998;39:663–67

    PubMed  CAS  Google Scholar 

  22. Kubota K, Matsuzawa T, Fujiwara T, Sato T, Tada M, Ido T, et al. Differential diagnosis of AH109A tumor and inflammation by radioscintigraphy with L-[methyl-11C]methionine. Jpn J Cancer Res 1989;80:778–82

    PubMed  CAS  Google Scholar 

  23. Iwata R, Furumoto S, Pascali C, Bogni A, Ishiwata K. Radiosynthesis of O-[11C]methyl-L-tyrosine and O-[18F]fluoromethyl-L-tyrosine as potential PET tracers for imaging amino acid transport. J Label Compd Radiopharm 2003;46:555–66

    Article  CAS  Google Scholar 

  24. Ishiwata K, Kawamura K, Wang WF, Furumoto S, Kubota K, Pascali C, et al. Evaluation of O-[11C]methyl-L-tyrosine and O-[18F]fluoromethyl-L-tyrosine as tumor imaging tracers by PET. Nucl Med Biol 2004;31:191–98

    Article  PubMed  CAS  Google Scholar 

  25. Kubota K, Matsuzawa T, Takahashi T, Fujiwara T, Kinomura S, Ido T, et al. Rapid and sensitive response of carbon-11-L-methionine tumor uptake to irradiation. J Nucl Med 1989;30:2012–016

    PubMed  CAS  Google Scholar 

  26. Rau FC, Weber WA, Wester HJ, Herz M, Becker I, Kruger A, et al. O-(2-[18F]fluoroethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging 2002;29:1039–46

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki M, Yamaguchi K, Honda G, Iwata R, Furumoto S, Jeong MG, et al. An experimental study on O-[18F]fluoromethyl-L-tyrosine for differentiation between tumor and inflammatory tissues. Ann Nucl Med 2005;19:589–95

    Article  PubMed  CAS  Google Scholar 

  28. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N. Active and passive mechanisms of [fluorine-18] fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J Nucl Med 1994;35:1067–75

    PubMed  CAS  Google Scholar 

  29. Haberkorn U, Bellemann ME, Brix G, Kamencic H, Morr I, Traut U, et al. Apoptosis and changes in glucose transport early after treatment of Morris hepatoma with gemcitabine. Eur J Nucl Med 2001;28:418–25

    Article  PubMed  CAS  Google Scholar 

  30. Iwata R, Pascali C, Bogni A, Furumoto S, Terasaki K, Yanai K. [18F]fluoromethyl triflate, a novel and reactive [18F]fluoromethylating agent: preparation and application to the on-column preparation of [18F]fluorocholine. Appl Radiat Isot 2002;57:347–52

    Article  PubMed  CAS  Google Scholar 

  31. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–336

    Article  PubMed  CAS  Google Scholar 

  32. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44:1426–31

    PubMed  CAS  Google Scholar 

  33. Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46:114–20

    PubMed  CAS  Google Scholar 

  34. Pauleit D, Stoffels G, Schaden W, Hamacher K, Bauer D, Tellmann L, et al. PET with O-(2-18F-fluoroethyl)-L-tyrosine in peripheral tumors: first clinical results. J Nucl Med 2005;46:411–6

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research (No. 13670910) from the Ministry of Education, Science, Sports, Culture and Technology, and for Cancer Research (11S-3) from the Ministry of Health, Labor, and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaura, G., Yoshioka, T., Fukuda, H. et al. O-[18F]fluoromethyl-L-tyrosine is a potential tracer for monitoring tumour response to chemotherapy using PET: an initial comparative in vivo study with deoxyglucose and thymidine. Eur J Nucl Med Mol Imaging 33, 1134–1139 (2006). https://doi.org/10.1007/s00259-006-0126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0126-2

Keywords

Navigation