Skip to main content
Log in

Influence of Pi3-K and PKC activity on 99mTc-(V)-DMSA uptake: correlation with tumour aggressiveness in an in vitro malignant glioblastoma cell line model

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Intensive proliferation and a high degree of migration and invasion are characteristic features of malignant glioblastomas, associated with a poor prognosis. Phosphatidylinositol-3-kinase (Pi3-K) and protein kinase C (PKC) are two phosphorylated proteins involved in glioblastoma cell progression. Phosphorylated focal adhesion protein kinase (FAK) has also been reported to be involved in tumour progression. In a recent study, we demonstrated a correlation between phosphorylated FAK, proliferation rate and 99mTc-(V)-dimercaptosuccinate [(V)-DMSA] uptake. We hypothesised that 99mTc-(V)-DMSA could be a potential imaging agent to evaluate glioblastoma aggressiveness. The aim of the present study was to assess the relationship between 99mTc-(V)-DMSA incorporation rate and modulation of Pi3-K and PKC activity.

Methods

Proliferation, migration and invasion capacities in the presence of protein kinase modulators—staurosporine (PKC inhibitor), 4-phorbol 12-myristate 13-acetate (PMA; PKC activator) and LY294002 (Pi3-K inhibitor)—were correlated with 99mTc-(V)-DMSA cell accumulation in an in vitro model of several malignant glioma cells: G111 (grade II), U-87-MG (grade III) and G152 (grade IV).

Results

In all cell lines tested, LY294002 and staurosporine treatment inhibited cell proliferation, migration and invasion. In contrast, treatment with PMA stimulated tumour aggressiveness. 99mTc-(V)-DMSA uptake was strongly correlated with the % of cellular proliferation (r=0.8462) and the % of cellular migration (r=0.9081), and to a lesser extent with the % of cellular invasion (r=0.7761).

Conclusion

Our results clearly demonstrated that 99mTc-(V)-DMSA reflects Pi3-K and PKC activity and is correlated with tumour aggressiveness. 99mTc-(V)-DMSA could be a reliable in vivo marker providing additional information on the biological status of malignant glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lemke DM. Epidemiology, diagnosis, and treatment of patients with metastatic cancer and high-grade gliomas of the central nervous system. J Infus Nurs 2004;27:263–269

    Article  PubMed  Google Scholar 

  2. Basu S, Nair N, Awasare S, Tiwari BP, Asopa R, Nair C. 99Tcm(V)DMSA scintigraphy in skeletal metastases and superscans arising from various malignancies: diagnosis, treatment monitoring and therapeutic implications. Br J Radiol 2004;7:347–361

    Article  Google Scholar 

  3. Atasever T, Gundogdu C, Vural G, Kapucu LO, Karalezli A, Unlu M. Evaluation of pentavalent Tc-99m DMSA scintigraphy in small cell and nonsmall cell lung cancers. Nuklearmedizin 1997;36:223–227

    PubMed  CAS  Google Scholar 

  4. Hirano T, Otake H, Kazama K, Wakabayashi K, Zama A, Shibasaki T, et al. Technetium-99m(V)-DMSA and thallium-201 in brain tumor imaging: correlation with histology and malignant grade. J Nucl Med 1997;38:1741–1749

    PubMed  CAS  Google Scholar 

  5. Hirano T, Otake H, Shibasaki T, Tamura M, Endo K. Differentiating histologic malignancy of primary brain tumors: pentavalent technetium-99m-DMSA. J Nucl Med 1997;38:20–26

    PubMed  CAS  Google Scholar 

  6. Denoyer D, Perek N, Le Jeune N, Frere D, Dubois F. Evidence that 99mTc-(V)-DMSA uptake is mediated by NaPi cotransporter type III in tumor cell lines. Eur J Nucl Med Mol Imaging 2004;31:77–84

    Article  PubMed  CAS  Google Scholar 

  7. Denoyer D, Perek N, Le Jeune N, Cornillon J, Dubois F. Correlation between 99mTc-(V)-DMSA uptake and constitutive level of phosphorylated focal adhesion kinase in an in vitro model of cancer cell lines. Eur J Nucl Med Mol Imaging 2005;32(7):820–827

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Roger I, Ivorra C, Diez A, Cortes MJ, Poch E, Sanz-Gonzalez SM, et al. Inhibition of cellular proliferation by drug targeting of cyclin-dependent kinases. Curr Pharm Biotechnol 2000;1(1):107–116

    PubMed  CAS  Google Scholar 

  9. Sridhar R, Hanson-Painton O, Cooper DR. Protein kinases as therapeutic targets. Pharm Res 2000;17(11):1345–1353

    Article  PubMed  CAS  Google Scholar 

  10. Brader S, Eccles SA. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 2004;90(1):2–8

    PubMed  CAS  Google Scholar 

  11. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry 2000;65:59–67

    PubMed  CAS  Google Scholar 

  12. Couldwell WT, Hinton DR, Law RE. Protein kinase C and growth regulation in malignant gliomas. Neurosurgery 1994;35(6):1184–1186

    PubMed  CAS  Google Scholar 

  13. Musashi M, Ota S, Shiroshita N. The role of protein kinase C isoforms in cell proliferation and apoptosis. Int J Hematol 2000;72(1):12–19

    PubMed  CAS  Google Scholar 

  14. Kakita A, Suzuki A, Nishiwaki K, Omo Y, Kotake M, Ariyoshi Y, et al. Stimulation of Na-dependent phosphate transport by platelet-derived growth factor in rat aortic smooth muscle cells. Atherosclerosis 2004;174:17–24

    Article  PubMed  CAS  Google Scholar 

  15. Yokoyama A, Hata N, Horiuchi K, Nasuda H, Saji H, Ohta H, et al. The design of a pentavalent 99mTc-dimercaptosuccinate complex as a tumor imaging agent. Int J Nucl Med Biol 1985;12:273–279

    Article  PubMed  CAS  Google Scholar 

  16. Zhang W, Law RE, Hinton DR, Couldwell WT. Inhibition of human malignant glioma cell motility and invasion in vitro by hypericin, a potent protein kinase C inhibitor. Cancer Lett 1997;25:120:31–38

    Article  CAS  Google Scholar 

  17. Mohan DRK, Nagarathna R, Krishna M, Jagtap JC, Shastry P. Differential responses of staurosporine on protein kinase C activity and proliferation in two murine neuroblastoma cell lines. Cancer Lett 1999;139:137–143

    Article  PubMed  CAS  Google Scholar 

  18. Park MJ, Park IC, Hur JH, Rhee CH, Choe TB, Yi DH, et al. Protein kinase C activation by phorbol ester increases in vitro invasion through regulation of matrix metalloproteinases/tissue inhibitors of metalloproteinases system in D54 human glioblastoma cells. Neurosci Lett 2000;290:201–204

    Article  PubMed  CAS  Google Scholar 

  19. Pollack IF, Randall MS, Kristofill MP, Kelly RH, Selker RG, Vertosick FT. Response of malignant glioma cell lines to activation and inhibition of protein kinase C-mediated pathways. J Neurosurg 1990;73:98–105

    PubMed  CAS  Google Scholar 

  20. Demuth T, Berens M. Molecular mechanisms of glioma cell migration and invasion. J Neuro-oncol 2004;70:217–228

    Article  Google Scholar 

  21. Joy A, Beaudry C, Tran N, Ponce F, Holz D, Demuth T, et al. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 2003;116:4409–4417

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson KM, Quinn DM, Kellett GL, Warr JR. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett 2003;190:31–36

    Article  PubMed  CAS  Google Scholar 

  23. Ma AD, Metjian A, Bragrodia S, Taylor S, Abrams CS. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase gamma, a Rac guanosine exchange factor, and Rac. Mol Cell Biol 1998;18:4744–4451

    PubMed  CAS  Google Scholar 

  24. Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ. Association of increased phosphatidylinositol 3-kinase signalling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 2001;95:379–380

    Article  Google Scholar 

  25. Papantoniou V, Souvatzoglou M, Valotassiou V, Louvrou A, Ambela C, Koutsikos J, et al. Relationship of cell proliferation (Ki-67) to 99mTc-(V)DMSA uptake in breast cancer. Breast Cancer Res 2004;6:R56–62

    Article  PubMed  CAS  Google Scholar 

  26. Papantoniou V, Tsiouris S. In vitro verification of the correlation of in vivo 99mTc-(V)DMSA uptake with cellular proliferation rate. Eur J Nucl Med Mol Imaging 2005;32(10):1240–1241

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Ligue National Contre le Cancer – Comité Départemental de la Loire. We thank Dr. A. Saul for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Le Jeune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Jeune, N., Perek, N. & Dubois, F. Influence of Pi3-K and PKC activity on 99mTc-(V)-DMSA uptake: correlation with tumour aggressiveness in an in vitro malignant glioblastoma cell line model. Eur J Nucl Med Mol Imaging 33, 1206–1213 (2006). https://doi.org/10.1007/s00259-006-0122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0122-6

Keywords

Navigation