Skip to main content

Advertisement

Log in

In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

For the assessment of folate-based radiopharmaceuticals, human nasopharyngeal KB carcinoma cells are traditionally used although nasopharyngeal cancer is rare. On the other hand, the folate receptor (FR) is frequently overexpressed on diverse cancer types, the highest frequency (>90%) being on ovarian carcinomas. The goal of our study was the in vitro and in vivo assessment of different FR-positive human carcinoma cells. In addition, a murine sarcoma cell line was assessed as a pre-clinical alternative to human xenograft models.

Methods

FR-positive human nasopharyngeal, cervical, ovarian and colorectal cancer cell lines and the transgenic mouse sarcoma (24JK-FBP) cell line were targeted with a novel 99mTc-tricarbonyl folate derivative 2. Comparative in vitro cell binding studies were carried out under standardised folate-deficient conditions. In vivo studies were performed in nude mice and C6 black mice.

Results

The in vitro cell experiments revealed only FR-specific binding (unspecific <0.02%), ranging from 3.5% to 52% of complex 2 owing to variable levels of FR expression of the cell lines. In vivo tumour uptake of radiotracer 2 varied less than in vitro. It ranged from 0.66±0.17% ID/g (LoVo) through 1.16±0.64% ID/g (IGROV-1) and 1.55±0.43% ID/g (24JK-FBP) to 2.33±0.36% ID/g (KB) 4 h p.i.

Conclusion

These pre-clinical studies indicate that in vitro data obtained in FR-positive cancer cells do not necessarily correspond with or predict in vivo radiofolate uptake in corresponding (xeno)grafts. In addition, the murine 24JK-FBP cell line proved to be a valuable pre-clinical alternative to human tumour models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Experiments were performed with 3H-folic acid at 4°C because under these conditions endocytosis is largely attenuated. Time-dependent cell binding studies, performed over a period of 4 h revealed maximal binding after 2 h. Experiments with excess unlabelled folic acid in order to block FRs revealed negligible amounts (<0.5%) of unspecific cell binding of 3H-folic acid and could therefore be neglected (data not shown).

References

  1. Ke CY, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 2003;30:811–817

    Article  PubMed  CAS  Google Scholar 

  2. Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 2001;6:44–51

    Article  PubMed  CAS  Google Scholar 

  3. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147–162

    Article  PubMed  CAS  Google Scholar 

  4. Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 1997;73:859–864

    Article  PubMed  CAS  Google Scholar 

  5. Leamon CP, Low PS. Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem 1992;267:24966–24971

    PubMed  CAS  Google Scholar 

  6. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-pseudomonas exotoxin conjugates toward tumor cells—contribution of translocation domain. J Biol Chem 1993;268:24847–24854

    PubMed  CAS  Google Scholar 

  7. Li S, Huang L. Targeted delivery of antisense oligodeoxynucleotides formulated in a novel lipidic vector. J Liposome Res 1998;8:239–250

    CAS  Google Scholar 

  8. Li S, Deshmukh HM, Huang L. Folate-mediated targeting of antisense oligodeoxynucleotides to ovarian cancer cells. Pharm Res 1998;15:1540–1550

    Article  PubMed  CAS  Google Scholar 

  9. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity fo late receptor expressed in ovarian tumor xenografts. Magn Reson Mat Phys Biol Med 2001;12:104–113

    Article  CAS  Google Scholar 

  10. Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1995;1233:134–144

    Article  PubMed  Google Scholar 

  11. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, et al. Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjugate Chem 1999;10:289–298

    Article  CAS  Google Scholar 

  12. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004;56:1177–1192

    Article  PubMed  CAS  Google Scholar 

  13. Mathias CJ, Wang S, Waters DJ, Turek JJ, Low PS, Green MA. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 1998;39:1579–1585

    PubMed  CAS  Google Scholar 

  14. Mathias CJ, Hubers D, Low PS, Green MA. Synthesis of [99mTc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjugate Chem 2000;11:253–257

    Article  CAS  Google Scholar 

  15. Siegel BA, Dehdashti F, Mutch DG, Podoloff DA, Wendt R, Sutton GP, et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 2003;44:700–707

    PubMed  CAS  Google Scholar 

  16. Leamon CP, Parker MA, Vlahov IR, Xu LC, Reddy JA, Vetzel M, et al. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjugate Chem 2002;13:1200–1210

    Article  CAS  Google Scholar 

  17. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP. Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 2004;45:857–866

    PubMed  CAS  Google Scholar 

  18. Müller C, Dumas C, Hoffmann U, Schubiger PA, Schibli R. Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. J Organomet Chem 2004;689:4712–4721

    Article  CAS  Google Scholar 

  19. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem 1996;7:56–62

    Article  CAS  Google Scholar 

  20. Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, et al. Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chem 1997;8:673–679

    Article  CAS  Google Scholar 

  21. Mathias CJ, Wang S, Low PS, Waters DJ, Green MA. Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol 1999;26:23–25

    Article  PubMed  CAS  Google Scholar 

  22. Trump DP, Mathias CJ, Yang ZF, Low PSW, Marmion M, Green MA. Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 2002;29:569–573

    Article  PubMed  CAS  Google Scholar 

  23. Panwar P, Shrivastava V, Tandon V, Mishra P, Chuttani K, Sharma RK, et al. 99mTc-tetraethylenepentamine-folate—a new 99mTc-based folate derivative for the detection of folate receptor positive tumors—synthesis and biological evaluation. Cancer Biol Ther 2004;3:995–1001

    Article  PubMed  CAS  Google Scholar 

  24. Ke CY, Mathias CJ, Green MA. Targeting the tumor-associated folate receptor with an 111In-DTPA conjugate of pteroic acid. J Am Chem Soc 2005;127:7421–7426

    Article  PubMed  CAS  Google Scholar 

  25. Garin-Chesa P, Campbell I, Saigo PE, Lewis JL, Old LJ, Rettig WJ. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 1993;142:557–567

    PubMed  CAS  Google Scholar 

  26. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–5338

    PubMed  CAS  Google Scholar 

  27. Miotti S, Facheris P, Tomassetti A, Bottero F, Bottini C, Ottone F, et al. Growth of ovarian-carcinoma cell lines at physiological folate concentration—effect on folate-binding protein expression in vitro and in vivo. Int J Cancer 1995;63:395–401

    PubMed  CAS  Google Scholar 

  28. Miotti S, Bagnoli M, Ottone F, Tomassetti A, Colnaghi MI, Canevari S. Simultaneous activity of two different mechanisms of folate transport in ovarian carcinoma cell lines. J Cell Biochem 1997;65:479–491

    Article  PubMed  CAS  Google Scholar 

  29. Guo WJ, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 1999;40:1563–1569

    PubMed  CAS  Google Scholar 

  30. Guo WJ, Lee T, Sudimack J, Lee RJ. Receptor-specific delivery of liposomes via folate-PEG-chol. J Liposome Res 2000;10:179–195

    Article  CAS  Google Scholar 

  31. Müller C, Hohn A, Schubiger AP, Schibli R. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumor targeting. Eur J Nucl Med Mol Imaging 2006; in press. DOI 10.1007/s00259-006-0111-9

  32. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284–293

    Article  PubMed  CAS  Google Scholar 

  33. Wu M, Gunning W, Ratnam M. Expression of folate receptor type a in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev 1999;8:775–782

    CAS  Google Scholar 

  34. Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997;74:193–198

    Article  PubMed  CAS  Google Scholar 

  35. de Nonancourt-Didion M, Gueant JL, Adjalla C, Chery C, Hatier R, Namour F. Overexpression of folate binding protein a is one of the mechanism explaining the adaptation of HT29 cells to high concentration of methotrexate. Cancer Lett 2001;171:139–145

    Article  PubMed  Google Scholar 

  36. Mathias CJ, Wang S, Lee RJ, Waters DJ, Low PS, Green MA. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 1996;37:1003–1008

    PubMed  CAS  Google Scholar 

  37. Mathias CJ, Lewis MR, Reichert DE, Laforest R, Sharp TL, Lewis JS, et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine- folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 2003;30:725–731

    Article  PubMed  CAS  Google Scholar 

  38. Antony AC, Kane MA, Portillo RM, Elwood PC, Kolhouse JF. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J Biol Chem 1985;260:4911–4917

    Google Scholar 

  39. Alberto R, Ortner K, Wheatley N, Schibli R, Schubiger AP. Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 2001;123:3135–3136

    Article  PubMed  CAS  Google Scholar 

  40. Matsue H, Rothberg KG, Takashima A, Kamen BA, Anderson RGW, Lacey SW. Folate receptor allows cells to grow in low concentrations of 5-methyltetrahydrofolate. Proc Natl Acad Sci USA 1992;89:6006–6009

    Article  PubMed  CAS  Google Scholar 

  41. Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev 2004;56:1205–1207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ilse Novak, Dr. Robert Waibel and Dr. Elisa Garcia-Garayoa for valuable discussions and Alain Blanc, Judith Stahel and Christine De Pasquale for technical assistance. This work was financially supported by Mallinckrodt-Tyco Inc. and Merck Eprova AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Schibli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Schubiger, P.A. & Schibli, R. In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur J Nucl Med Mol Imaging 33, 1162–1170 (2006). https://doi.org/10.1007/s00259-006-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0118-2

Keywords

Navigation