Skip to main content
Log in

Synthesis and evaluation of radioiodinated (S,S)-2-(α-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Abnormality of the brain norepinephrine transporter (NET) has been reported in several psychiatric and neuronal disorders. Since NET is an important target for the diagnosis of these diseases, the development of radiopharmaceuticals for imaging of brain NET has been eagerly awaited. In this study, we synthesized (S,S)-2-(α-(2-iodophenoxy)benzyl)morpholine [(S,S)-IPBM], a derivative of reboxetine iodinated at position 2 of the phenoxy ring, and evaluated its potential as a radiopharmaceutical for imaging brain NET using SPECT.

Methods

(S,S)-123/125I-IPBM was synthesized in a halogen exchange reaction. The affinity and selectivity of (S,S)-IPBM for NET was measured by assaying the displacement of 3H-nisoxetine and (S,S)-125I-IPBM from the binding site in rat brain membrane, respectively. The biodistribution of (S,S)-125I-IPBM was also determined in rats. Furthermore, SPECT studies with (S,S)-123I-IPBM were carried out in the common marmoset.

Results

(S,S)-125I-IPBM was prepared with high radiochemical yields (65%) and high radiochemical purity (>98%). (S,S)-IPBM showed high affinity and selectivity for NET in the binding assay experiments. In biodistribution experiments, (S,S)-125I-IPBM showed rapid uptake in the brain, and the regional cerebral distribution was consistent with the density of NET. The administration of nisoxetine, a selective NET-binding agent, decreased the accumulation of (S,S)-125I-IPBM in the brain, but the administration of selective serotonin transporter and dopamine transporter binding agents caused no significant changes in the accumulation. Moreover, (S,S)-123I-IPBM allowed brain NET imaging in the common marmoset with SPECT.

Conclusion

These results suggest that (S,S)-123I-IPBM is a potential SPECT radiopharmaceutical for imaging brain NET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Blakely RD, De Felice LJ, Hartzell HC. Molecular physiology of orepinephrine and serotonin transporters. J Exp Biol 1994;196:263–281

    PubMed  CAS  Google Scholar 

  2. Schomig E, Fischer P, Schonfeld CL, Trendelenburg U. The extent of neuronal re-uptake of 3H-noradrenaline in isolated vasa deferentia and atria of the rat. Naunyn Schmiedebergs Arch Pharmacol 1989;340:502–508

    PubMed  CAS  Google Scholar 

  3. Ryu SH, Lee SH, Lee HJ, Cha JH, Ham BJ, Han CS, et al. Association between norepinephrine transporter gene polymorphism and major depression. Neuropsychobiology 2004;49:174–177

    Article  PubMed  CAS  Google Scholar 

  4. Klimek V, Stockmeier C, Overholser J, Meltzer HY, Kalka S, Dilley G, et al. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 1997;17:8451–8458

    PubMed  CAS  Google Scholar 

  5. Brunello N, Mendlewicz J, Kasper S, Leonard B, Montgomery S, Nelson J, et al. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur Neuropsychopharmacol 2002;12:461–475

    Article  PubMed  CAS  Google Scholar 

  6. Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Brain Res Rev 2004;45:38–78

    Article  PubMed  CAS  Google Scholar 

  7. Tejani-Butt SM, Yang J, Zaffar H. Norepinephrine transporter sites are decreased in the locus coeruleus in Alzheimer’s disease. Brain Res 1993;631:147–150

    Article  PubMed  CAS  Google Scholar 

  8. Kiyono Y, Kanegawa N, Kawashima H, Kitamura Y, Iida Y, Saji H. Evaluation of radioiodinated (R)-N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine as a ligand for brain norepinephrine transporter imaging. Nucl Med Biol 2004;31:147–153

    Article  PubMed  CAS  Google Scholar 

  9. Kung MP, Choi SR, Hou C, Zhuang ZP, Foulon C, Kung HF. Selective binding of 2-[125I]iodo-nisoxetine to norepinephrine transporters in the brain. Nucl Med Biol 2004;31:533–541

    Article  PubMed  CAS  Google Scholar 

  10. Chumpradit S, Kung MP, Panyachotipun C, Prapansiri V, Foulon C, Brooks BP, et al. Iodinated tomoxetine derivatives as selective ligands for serotonin and norepinephrine uptake sites. J Med Chem 1992;35:4492–4497

    Article  PubMed  CAS  Google Scholar 

  11. Gehlert DR, Schober DA, Hemrick-Luecke SK, Krushinski J, Howbert JJ, Robertson DW, et al. Novel halogenated analogs of tomoxetine that are potent and selective inhibitors of norepinephrine uptake in brain. Neurochem Int 1995;26:47–52

    Article  PubMed  CAS  Google Scholar 

  12. Millan MJ, Gobert A, Lejeune F, Newman-Tancredi A, Rivet JM, Auclair A, et al. S33005, a novel ligand at both serotonin and norepinephrine transporters: I. Receptor binding, electrophysiological, and neurochemical profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 2001;298:565–580

    PubMed  CAS  Google Scholar 

  13. Wilson AA, Johnson DP, Mozley D, Hussey D, Ginovart N, Nobrega J, et al. Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter. Nucl Med Biol 2003;30:85–92

    Article  PubMed  CAS  Google Scholar 

  14. Ding YS, Lin KS, Garza V, Carter P, Alexoff D, Logan J, et al. Evaluation of a new norepinephrine transporter PET ligand in baboons, both in brain and peripheral organs. Synapse 2003;50:345–352

    Article  PubMed  CAS  Google Scholar 

  15. Schou M, Halldin C, Sovago J, Pike VW, Gulyas B, Mozley PD, et al. Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER. Nucl Med Biol 2003;30:707–714

    Article  PubMed  CAS  Google Scholar 

  16. Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 2004;53:57–67

    Article  PubMed  CAS  Google Scholar 

  17. Melloni P, Della Torre A, Lazzari E, Mazzini G, Meroni M. Configurational studies on 2-[α-(2-ethoxyphenoxy)benzyl] morpholine FCE 20124. Tetrahedron 1985;41:1393–1399

    Article  CAS  Google Scholar 

  18. Cheetham SC, Viggers JA, Butler SA, Prow MR, Heal DJ. [3H]nisoxetine—a radioligand for noradrenaline reuptake sites: correlation with inhibition of [3H]noradrenaline uptake and effect of DSP-4 lesioning and antidepressant treatments. Neuropharmacology 1996;35:63–70

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–275

    PubMed  CAS  Google Scholar 

  20. Choi SR, Hou C, Oya S, Mu M, Kung MP, Siciliano M, et al. Selective in vitro and in vivo binding of [125I]ADAM to serotonin transporters in rat brain. Synapse 2000;38:403–412

    Article  PubMed  CAS  Google Scholar 

  21. Cheng Y, Prusoff WH. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 1973;22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  22. Tejani-Butt SM. [3H]nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 1992;260:427–436

    PubMed  CAS  Google Scholar 

  23. Tseng YT, Padbury JF. Expression of a pulmonary endothelial norepinephrine transporter. J Neural Transm 1998;105:1187–1191

    Article  PubMed  CAS  Google Scholar 

  24. Kiyono Y, Kanegawa N, Kawashima H, Fujiwara H, Iida Y, Nishimura H, et al. A new norepinephrine transporter imaging agent for cardiac sympathetic nervous function imaging: radioiodinated (R)-N-methyl-3-(2-iodophenoxy)-3-phenylpropanamine. Nucl Med Biol 2003;30:697–706

    Article  PubMed  CAS  Google Scholar 

  25. Toyohira Y, Yanagihara N, Minami K, Ueno S, Uezono Y, Tachikawa E, et al. Down-regulation of the noradrenaline transporter by interferon-alpha in cultured bovine adrenal medullary cells. J Neurochem 1998;70:1441–1447

    Article  PubMed  CAS  Google Scholar 

  26. Ding YS, Lin KS, Logan J, Benveniste H, Carter P. Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S,S) and (R,R) enantiomers of reboxetine analogs ([11C]methylreboxetine, 3-Cl-[11C]methyl-reboxetine and [18F]fluororeboxetine), (R)-[11C]nisoxetine, [11C]oxaprotiline and [11C]lortalamine. J Neurochem 2005;94:337–351

    Article  PubMed  CAS  Google Scholar 

  27. Logan J, Ding YS, Lin KS, Pareto D, Fowler J, Biegon A. Modeling and analysis of PET studies with norepinephrine transporter ligands: the search for a reference region. Nucl Med Biol 2005;32:531–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Daiichi Radioisotope Laboratories Ltd., Tokyo, Japan, for providing Na123I. This study was supported in part by Grants-in-aid for General Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the 21st Century COE Program “Knowledge Information Infrastructure for Genome Science”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanegawa, N., Kiyono, Y., Kimura, H. et al. Synthesis and evaluation of radioiodinated (S,S)-2-(α-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter. Eur J Nucl Med Mol Imaging 33, 639–647 (2006). https://doi.org/10.1007/s00259-005-0017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-0017-y

Keywords

Navigation