Skip to main content

Advertisement

Log in

Optimised tracer-dependent dosage cards to obtain weight-independent effective doses

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was twofold: firstly, to determine whether the European Association of Nuclear Medicine (EANM) dosage card results in weight-independent effective doses or weight-independent count rates; secondly, to determine whether one dosage card is sufficient for 95 different radiopharmaceuticals, and, if not, how many cards we reasonably need to take into account inter-tracer variability.

Methods

Normalisation factors for count rate and effective dose were calculated as a function of body weight, with 70 kg as standard. Calculations were performed, using whole-body absorption fractions and MIRDOSE 3 software, for seven anthropomorphic phantoms and ten radionuclides. An analytic function for both relations was proposed. Normalisation factors for effective dose for 95 radiopharmaceuticals were investigated using cluster analysis.

Results

Normalisation factors for count rate and effective dose can be estimated accurately as a function of body weight W by (W/70)a holding only one parameter, called the a value. The a values for 95 radiopharmaceuticals were classified into three clusters (nA = 7, nB = 76, nC = 12). Cluster A contains tracers for renal studies. Cluster B contains all remaining tracers, except iodine-labelled tracers for thyroid studies and 89Sr for therapy, which belong to cluster C.

Conclusion

Correction factors proposed by the EANM task group mainly correct for effective dose. They are very similar to the factors obtained for cluster A. Using the EANM factors for tracers belonging to clusters B and C results in significantly higher effective doses to children. We suggest using three tracer-dependent dosage cards for which the correction factors have been calculated to obtain weight-independent effective doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Piepsz A, Hahn K, Roca I, Ciofetta G, Toth G, Gordon I, et al. A radiopharmaceutical schedule for imaging in paediatrics. Eur J Nucl Med 1990;17:127–9.

    CAS  PubMed  Google Scholar 

  2. Cristy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources. Cristy and Eckerman phantom series. ORNL/TM-8381 V1–V7. Oak Ridge, TN: Oak Ridge National Laboratory; 1987.

  3. Annals of the ICRP. ICRP Publication 38. Radionuclide transformations, energy and intensity of emissions, vols 11–13. New York: Pergamon; 1983.

  4. Stabin MG. MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996;37:538–46.

    CAS  PubMed  Google Scholar 

  5. Annals of the ICRP. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals, vol 18, Nos. 1–4. New York: Pergamon; 1987.

  6. Annals of the ICRP. ICRP Publication 80. Radiation dose to patients from radiopharmaceuticals, vol 28, No. 3. New York: Pergamon; 1998.

  7. Annals of the ICRP. ICRP Publication 60. Recommendations of the International Commission on Radiological Protection, vol 21, Nos. 1–3. New York: Pergamom; 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, F., Thierens, H., Piepsz, A. et al. Optimised tracer-dependent dosage cards to obtain weight-independent effective doses. Eur J Nucl Med Mol Imaging 32, 581–588 (2005). https://doi.org/10.1007/s00259-004-1708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1708-5

Keywords

Navigation